
Modular composition modulo triangular sets and
applications

Adrien Poteaux† ? Éric Schost†

adrien.poteaux@lifl.fr eschost@uwo.ca
†: Computer Science Department, The University of Western Ontario, London, ON, Canada

?: LIFL, Université Lille1, UMR-CNRS 8022, France

November 21, 2012

Abstract

We generalize Kedlaya and Umans’ modular composition algorithm to the mul-
tivariate case. As a main application, we give fast algorithms for many operations
involving triangular sets (over a finite field), such as modular multiplication, inversion,
or change of order. For the first time, we are able to exhibit running times for these
operations that are almost linear, without any overhead exponential in the number of
variables. As a further application, we show that, from the complexity viewpoint, Char-
lap, Coley and Robbins’ approach to elliptic curve point counting can be competitive
with the better known approach due to Elkies.

Keywords Triangular set, modular composition, power projection, finite fields, complexity

1 Introduction

Our purpose in this paper is to give complexity results for operations involving triangular
sets. We start by recalling the definition.

Triangular sets. Let F be our base field, and let Y = Y1, . . . , Ys be indeterminates over
F; we order them as Y1 < · · · < Ys. A (monic) triangular set T = (T1, . . . , Ts), for the given
variable ordering, is a family of polynomials in F[Y] with the following triangular structure:

T

∣∣∣∣∣∣∣
Ts(Y1, . . . , Ys)

...
T1(Y1),

such that for all i, Ti is monic in Yi, and Ti is reduced modulo 〈T1, . . . , Ti−1〉. Note that T is
a zero-dimensional lexicographic Gröbner basis for the order Y1 < · · · < Ys, with a triangular
structure.

1

Such representations can be used to solve systems of equations, whereby the solution set
is described by one, or several, triangular set(s) as above (or generalizations thereof, called
regular chains, that are well suited to situations of positive dimensions). There exists a
vast literature dedicated to algorithms with triangular sets, regular chains, and applications:
without being exhaustive, we refer the reader to [25, 5, 33, 24, 40]. In this paper, we will
be concerned with some basic subroutines at the heart of these algorithms: multiplication,
inversion, norm computation modulo a triangular set, as well as change of order on the
variables.

It is easy to show examples, involving very few variables, where these operations are
useful. The following is taken from [35]: suppose that we wish to find a factor of the self-
reciprocal polynomial T1 = Y 6 − 5Y 5 + 6Y 4 − 9Y 3 + 6Y 2 − 5Y + 1. The set of roots of T1

is globally invariant under the map α 7→ 1
α

, so the function α 7→ α + 1
α

is invariant for this
action. Hence, it is natural to introduce the bivariate triangular set

T

∣∣∣∣∣ T2 = Y2 − (Y1 + 1
Y1

) mod T1 = Y2 − (Y 5
1 − 5Y 4

1 + 6Y 3
1 − 9Y 2

1 + 5Y1 − 5)

T1(Y1) = Y 6
1 − 5Y 5

1 + 6Y 4
1 − 9Y 3

1 + 6Y 2
1 − 5Y1 + 1.

Now, change the order of Y1, Y2 in T; we obtain another triangular set that generates the
same ideal: ∣∣∣∣ Y 2

1 − Y2Y1 + 1
Y 3

2 − 5Y 2
2 + 3Y2 + 1.

We factor the last polynomial as Y 3
2 − 5Y 2

2 + 3Y2 + 1 = (Y 2
2 − 4Y2 − 1)(Y2 − 1), and keep

for instance the factor Y 2
2 − 4Y2 − 1. Then, we restore the initial order in the system. This

yields ∣∣∣∣ Y2 + Y 3
1 − 4Y 2

1 − 4
Y 4

1 − 4Y 3
1 + Y 2

1 − 4Y1 + 1,

where we can read off a factor of the initial polynomial T1. Hence, through change of order,
we were able to halve the degree of the polynomial to factor. The last section of this paper
will present a less trivial application of this idea to elliptic curve point counting.

Complexity issues. Despite a growing literature, the complexity of the former operations
remains imperfectly understood. For instance, in the previous example, it is not clear a priori
that the cost of change of order would not offset the gains obtained by reducing the degree
in the factorization.

To measure costs, we will write di = deg(Ti, Yi), and d = (d1, . . . , ds) will be called
the multidegree of T. Then, δd = d1 · · · ds is the natural complexity measure associated to
computations modulo 〈T〉, as it represents the dimension of F[Y]/〈T〉. The objective of our
work is to give algorithms with a running time linear in δd, up to logarithmic factors.

The simplest non-trivial question is multiplying two polynomials A,B modulo 〈T〉, as-
suming A and B are initially reduced modulo 〈T〉. As of now, there is no known algorithm
with a quasi-linear cost. For instance, the modular multiplication algorithm of [31] starts by
expanding the product AB, then reduces it modulo 〈T〉. As a result, an overhead exponen-
tial in the dimension appears: after expansion, the product AB has δ′ = (2d1−1) · · · (2ds−1)
monomials; we always have δ′ ≤ 2sδd and in the extreme case d1 = · · · = ds = 2 we have

2

δ′ = δ
log2(3)
d . Presently, the best generalist algorithm is that of [31], with a cost of 4sδd base

field operations, up to polylogarithmic factors; see also [9] for some particular cases.
The next question is that of inversion modulo 〈T〉, when possible. The best previous

known result for this question [15] also has a cost of the form Ksδd, up to polylogarithmic
terms, for some (large) constant K. It should be pointed out that this algorithm does more
than inversion: it allows one to handle zero-divisors modulo 〈T〉, by splitting T when needed.

Next, we consider norm computation: by analogy with the case of field extensions, the
norm of an element A in F[Y]/〈T〉 is the determinant of the endomorphism of multiplication
by A modulo 〈T〉; it coincides with the iterated resultant resY1(· · · (resYs(A, Ts) . . .), T1),
which is used for instance in algorithms for parametric systems [45]. We do not know of
a published complexity estimate for this question; the techniques of [15] could possibly be
applied and yield a result of the form Ksδd (up to the usual polylogarithmic factors).

The former algorithms run in quasi-linear time when s is fixed: the challenge is to remove
the exponential overhead in s. For our last question, change of order, the situation is much
worse. On input T, this problem consists in finding a triangular set T′ for a new variable
order, that generates the same ideal as T (provided such a T′ exists). As of now, there is
no quasi-linear algorithm for this task, even when the number of variables is kept constant
(actually, even for s = 2).

Modular composition and power projection. A main ingredient for the algorithms
to follow are operations called modular composition and power projection. These operations
are well-known for univariate polynomials [11, 43], in which case they respectively read as
follows:

• modular composition: given polynomials G,H in F[Y], with deg(G) < d and deg(H) =
d, and F in F[X], with deg(F) < e, compute F (G) mod H

• power projection: given polynomials G,H in F[Y], with deg(G) < d and deg(H) = d,
an F-linear form τ : F[Y]/H → F, and a bound e, compute τ(Gi mod H) for all i < e.

Over an abstract field (in an algebraic complexity model), no quasi-linear algorithm is known
for these operations: the most well-known results are due to Brent-Kung [11] and Shoup [43],
with a cost of O(d(ω+1)/2) for e = d, where ω is a feasible exponent for matrix multiplication
(here we assume ω > 2, otherwise logarithmic factors appear). For the best known value
of ω = 2.37 [14], we get an exponent of about 1.69. Huang and Pan showed that using
rectangular matrix multiplication, one can reduce the exponent to 1.67 [23].

The starting point for this work is a recent result by Kedlaya and Umans [29]: when
F is a finite field, they came up with quasi-linear time algorithms for these problems, in
a boolean RAM model (where bit operations, not field operations, are counted). They
actually do more, by considering an m-uple (G1, . . . , Gm) of polynomials instead of G, and
computing respectively F (G1, . . . , Gm) mod H, for some multivariate F , or values of the
form τ(Ga1

1 · · ·Gam
m).

Part of our tasks will be to extend these results to multivariate situations. Indeed, it
has been known for long that modular composition and power projection are important for
algorithms involving triangular sets: this is in essence in [43] for some particular cases, and
detailed in [35].

3

To state the multivariate versions, we need the following notation: for d = (d1, . . . , ds) in
Ns, F[Y]d denotes the F-vector space of polynomials F ∈ F[Y] with deg(F, Yi) < di for all
i ≤ s. If T is a triangular set of multidegree d in F[Y], RT will represent the residue class
ring F[Y]/〈T〉. Remark that RT ' F[Y]d as a vector space; as a consequence, in all our
algorithms, elements of RT are represented on the monomial basis {Y a1

1 · · ·Y as
s | 0 ≤ ai <

di for all i}. Then, multivariate modular composition, with parameter e = (e1, . . . , em) ∈
Nm, is the following problem:

• multivariate modular composition: given T, F in F[X1, . . . , Xm]e and (G1, . . . , Gm) in
Rm

T , compute F (G1, . . . , Gm) ∈ RT.

Remark that the classical version of this question has m = s = 1, and Kedlaya-Umans’
result has m arbitrary and s = 1 (under some restrictions on e). Remark also that in the
particular case m = 1 and F = X2

1 , modular composition boils down to squaring modulo
〈T〉, so it is already non-trivial.

To discuss power projection, we let R∗T = HomF(RT,F) be the dual of RT over F;
naturally, the elements of R∗T will be given on the dual basis of the monomial basis seen
before. Then, the multivariate version of power projection, with parameter e as above, reads
as follows:

• multivariate power projection: given T, (G1, . . . , Gm) in Rm
T and τ in R∗T, compute the

values τ(Ga1
1 · · ·Gam

m), for 0 ≤ ai < ei, i = 1, . . . ,m.

Modular composition is F-linear in the coefficients of F ; the transpose map is precisely
power projection (this was noted in [43] in the univariate case). Indeed, the former problem
amounts to multiplying the δd × δe matrix M whose columns are the coefficients of the
polynomials Ga1

1 · · ·Gam
m mod 〈T〉, for 0 ≤ a1 < e1, . . . , 0 ≤ am < em, by the δe × 1 column

vector of coefficients of F . Then, the dual problem amounts to multiplying the matrix M
on the left by a 1× δd vector, which we see as the coefficient vector of a linear form τ ∈ R∗T.

Main results. We will revisit the questions for triangular sets discussed previously, and
provide new estimates, under the additional assumptions that (i) the base field is a finite
field Fq and (ii) 〈T〉 is a radical ideal, in which case we say that T is squarefree.

The following notation is in use: if S is a set and g is a real-valued function on S,
plog(g) denotes a real-valued function h on S for which there exists α, β > 0 such that
h(s) ≤ α log2(max(g(s), 2))β holds for all s in S (so using this notation allows us to omit
big-Os). If we do not indicate otherwise, the constant α implied in a plog() is universal; if
it does depend on some parameters (typically a parameter ε), we indicate them in subscript.
The constant β will always be universal (it won’t depend on any parameter such as ε).

Our algorithms crucially rely on Kedlaya and Umans’ results cited previously [29]. As
a consequence, the complexity results are expressed in a similar manner: typically, for any
ε > 0, one can obtain a running time of the form δ1+ε

d log(q) plogε(log q), with a (large)
constant hidden in the term plogε(log q). As in [29], these results are expressed in a boolean
RAM model (we may e.g. use the logarithmic cost model [2]).

To be complete, we must precise how the elements of Fq are encoded: elements of Fp, for
p prime, are represented as integers in {0, . . . , p− 1}; for q = pn, Fq is assumed to be given

4

as Fp[T]/〈P 〉, with P irreducible, so elements of Fq are represented as polynomials over Fp
of degree less than n. With this representation, arithmetic operations in Fq can be done in
time log(q) plog(log(q)) in our RAM model (disregarding the cost induced by fetching and
storing data, which depends on the data location in memory).

The algorithms are Las Vegas (we give expected running time, but results are always
correct), as we rely on the random selection of field elements. Thus, we assume that our
RAM can produce a random integer uniformly distributed in the range {0, . . . , p−1} in time
log(p) plog(log(p)).

Finally, for modular composition and power projection, we add the constraint that e be
of the form e = (e1, e2), that is, we take m = 2: this covers the most useful applications.

Theorem 1. Fix ε > 0. Given a triangular set T of multidegree d = (d1, . . . , ds) in
Fq[Y1, . . . , Ys], one can do the following using an expected s2 δ1+ε

d log(q) plogε(log q) bit oper-
ations:

• test whether T is squarefree,

• if T is squarefree, multiplication, invertibility test and inversion, norm computation in
RT.

With notation as above, for e = (e1, e2) in N2, one can do the following using an expected
s2 (δd + δe)

1+ε log(q) plogε(log q) bit operations:

• if T is squarefree, modular composition and power projection modulo 〈T〉, with param-
eter e.

We continue the presentation of our results with change of order. For this question, we
will need a stronger assumption than before: the characteristic of Fq must be large enough.

Theorem 2. Fix ε > 0. Given a squarefree triangular set T of multidegree d = (d1, . . . , ds)
in Fq[Y1, . . . , Ys], one can do the following using an expected s2 δ1+ε

d log(q) plogε(log q) bit
operations, provided the characteristic of Fq is greater than δd:

• given a target order Yσ(1) < · · · < Yσ(s) on the variables, determine whether the ideal
〈T〉 is generated by a triangular set T′ for this order;

• if so:

– compute T′;

– given A in RT, compute its image in RT′;

– given A in RT′, compute its image in RT.

Comments and relation to previous work. For most items above, except modular
composition and power projection, the input and output bit sizes are essentially δd log(q);
for modular composition and power projection, the input and output have bit size (δd +
δe) log(q). Thus, our cost estimates of respectively s2 δ1+ε

d log(q) plogε(log q) and s2 (δd +
δe)

1+ε log(q) plogε(log q) are close to linear.

5

The term s2 is rather inconsequential. In many cases, we can make the assumption that
di ≥ 2 for all i. Indeed, if di = 1, Ti has the form Yi − ri(Y1, . . . , Yi−1) so if they are
not essential to the problem at hand, Yi and Ti can be dismissed altogether. Under this
assumption, s becomes logarithmic in δd.

For a fixed ε, recall that the constant factor in the term plogε(log q) is fixed as well. Thus,
for multiplication and inversion, our results complement former ones: in a fixed number of
variables, previous results of the form Ksδd plog(δd) operations in F are marginally better,
as they do not involve the factor δεd; our results get better when s grows large with respect to
δd, for instance when di = 2 for all i. In this case, our results are of the form δ1+ε

d (forgetting

about the dependency in q), whereas no previous result did better than δ
log2(3)
d .

For modular composition and power projection, our results extend those of [29], which
hold only for s = 1 (those results actually cover different cases for e than we do: they have
e = (e, . . . , e)). Other results known for s > 1 are in [43] and [27], which have m = 1 and
s = 2, and [35], which discusses m = 2 and s = 2. These last works are based on Brent and

Kung’s idea, so the best cost they can obtain has the form δ
(ω+1)/2
d , for δe ' δd.

For change of order, the situation is similar: no previous algorithm achieved a quasi-
linear running time, even in the simplest case s = 2. Some previous approaches are based
on resultant and gcd computations [10], but it is unknown how to obtain a subquadratic
cost in δd with such techniques: on examples such as the one given at the beginning of this
introduction, even using a fast resultant algorithm, known techniques (either evaluation /
interpolation or direct approaches [37]) take quadratic time. The algorithms in [35] (which
are limited to s = 2) use modular composition and power projection as we do; however, they
rely on the techniques inspired by Brent and Kung’s algorithm discussed above, with a cost
of order δ

(ω+1)/2
d .

Main ideas and practical aspects. For both Theorems 1 and 2, the idea is to introduce
a primitive element modulo 〈T〉 (that is, a generator of RT), which allows us to replace
multivariate operations by univariate ones.

The delicate point is the conversion between the multivariate and univariate represen-
tations. The basic idea, using trace formulas, is well-known. The key problem is how to
compute the required traces efficiently: this is an instance of power projection, which we will
solve using Kedlaya and Umans’ idea. There is a subtle point here: a direct generalization of
Kedlaya and Umans’ algorithm gives a cost of the form Ksδ1+ε

d , for some constant K (when
δe ' δd). This is already better than previous results (as this is almost linear in δd for fixed
s), but it turns out that one can remove the exponential overhead Ks altogether. This is
done by using this algorithm only for bivariate triangular sets (with s = 2), since then a term
of the form Ks becomes irrelevant, and do the conversion from multivariate to univariate
representations by handling one variable after the other, using only bivariate algorithms.

All algorithms are completely explicit, but it remains a challenge to make them competi-
tive in practice. The central issue is to obtain an efficient implementation of our multivariate
versions of Kedlaya and Umans’ algorithms for modular composition and power projection.
Just as with their original version, the constants hidden in the complexity estimates make a
direct implementation of these algorithms slower than the classical solutions based on Brent
and Kung’s idea for inputs of realistic size. Further work is needed to solve this issue.

6

We also want to point out that the “higher-level” algorithms we build on top of modular
composition and power projection (such as multiplication, inversion, change of order, etc)
have an interest on their own; they are simple to understand and easy to implement. All
they require is a subroutine for bivariate modular composition and power projection. For
instance, they could also be implemented on top of the algorithms for modular composition
and power projection given in [35], at the cost however of a worse theoretical complexity.

Contents

1 Introduction 1

2 Preliminaries 7

3 Modular composition and power projection 9
3.1 Useful facts . 9
3.2 The case e = (e, . . . , e) . 11
3.3 The case e = (e1, e2) . 14

4 Representations of zero-dimensional ideals 16
4.1 Primitive representations . 16
4.2 Mixed representations . 17
4.3 Trace formulas . 18

5 Proof of Theorem 1 19
5.1 A worked example . 20
5.2 The bivariate case . 21
5.3 The general case . 22
5.4 Proof of Theorem 1 . 24

6 Proof of Theorem 2 26
6.1 A worked example . 26
6.2 The bivariate case . 28
6.3 The general case . 29
6.4 Proof of Theorem 2 . 32

7 An illustration from elliptic curve point counting 33

2 Preliminaries

This section recalls a few known algorithmic and complexity results involving triangular sets
and finite fields. These results will be used all along this paper.

7

Algebraic complexity and bit complexity. Our first remark concerns the two models of
computation that will be used in the paper. Both are RAM models: the algebraic RAM [26]
and the boolean one. We will often use implicitly the following principle: given an algorithm
written for an algebraic RAM over an abstract ring R, doing T operations in R, we will
deduce an algorithm in the boolean model that solves the same problem over Fq in time
T log(q) plog(T) plog(log(q)); the plog(T) term allows us to take into account the logarithmic
cost induced by fetching and storing data. This assumes that the cost of index manipulations,
loop control, etc, is negligible, and that all data is stored in the first TO(1) memory locations;
this will be the case in our examples.

The transposition principle. Let r, s ≥ 1 and let M be an r × s matrix with entries
in a field F. The transposition principle [12, Theorem 13.20] states that the existence of an
algebraic circuit for the matrix-vector product b 7→Mb implies the existence of a circuit with
the same size, up to O(r + s), to perform the transposed matrix-vector product c 7→ M tc.
We will rely on the same idea, but in an algebraic RAM model; we will not offer a general
proof, but rather indicate case-by-case how to do the transposition.

Note that for boolean models, there is no such transposition result; as a consequence,
extra care must be taken when discussing transposed algorithms in this context (as already
pointed out in [29]).

Arithmetic modulo triangular sets. We continue by describing basic algorithms for
triangular sets. Let T be a triangular set of multidegree d = (d1, . . . , ds) in F[Y]. We are
concerned here with the cost of multiplication and reduction modulo T. Theorem 1 in [31]
shows the following:

(F1) given A and B in F[Y]d, one can compute the product AB mod 〈T〉 in 4sδd plog(δd)
operations in F.

(F2) given d′ = (d′1, . . . , d
′
m), with d′i ≥ di for all i, and A in F[Y]d′ , the remainder A mod

〈T〉 can be computed in 4sδd′ plog(δd′) operations in F.

Finite field embeddings. Given a finite field Fq, and a positive integer t, we are interested
in the cost of finding an embedding Fq → Fq′ , with q′ = qt. Following our convention, we
suppose that Fq is given as Fp[T]/〈P 〉, with deg(P) = r, and we will look for Fq′ as Fp[T ′]/Q,
with deg(Q) = rt. Then, the key results we will use are the following.

(F3) One can construct in
√
p plog(q′) operations in Fp two polynomials Q and V in Fp[T ′]

such that ι : Fp[T]/〈P 〉 → Fp[T ′]/Q defined by T 7→ V is an embedding Fq → Fq′ .
Given Q and V , one can compute ι(x) for x in Fq, and ι−1(y) for y in ι(Fq), in plog(q′)
operations in Fp.

Let us justify this claim. First, we compute an irreducible polynomial Q of degree rt
in Fp[T ′] using

√
p plog(q′) operations in Fp [41]. Then, we factor Q in Fq[T ′] for a similar

8

cost [42]. Take a factor ψ of Q in Fq[T ′] and lift it canonically to Fp[T, T ′]. We then consider
the system ∣∣∣∣ ψ(T, T ′)

P (T)

and change the order of the variables. Since this system generates a maximal ideal, the
change of order results in a set of two equations of the form∣∣∣∣ T − V (T ′)

Q(T ′).

The map ι : Fp[T]/〈P 〉 → Fp[T ′]/Q defined by T 7→ V (T ′) realizes the requested embedding
Fq → Fq′ . The polynomial V can be computed using a number of Fp-operations polynomial
in rt, thus in plog(q′), e.g. by plain linear algebra; once V is known, computing ι(x), for
x ∈ Fq, takes a similar time, by modular composition. Finally, given y ∈ Fq′ in the range of
ι, one can recover its preimage in time plog(q′), by linear algebra again.

3 Modular composition and power projection

In this section, we give our first algorithms for multivariate modular composition and power
projection; we work modulo a triangular set T of multidegree d ∈ Ns, and we take a
parameter e ∈ Nm. The cases we will need in the further sections have m, s ≤ 2; for
convenience, the following theorem emphasizes this special case.

Theorem 3. Fix ε > 0 and positive integers m, s in {1, 2}. Given a triangular set T in
Fq[Y] of multidegree d ∈ Ns, one can solve the problems of multivariate modular com-
position and multivariate power projection modulo 〈T〉, with parameter e ∈ Nm, using
(δd + δe)

1+ε log(q) plogε(log(q)) bit operations.

We will actually have to prove slightly more: first, we study the case where m is arbitrary
and e = (e, . . . , e) ∈ Nm, then the case m = 2 and e arbitrary (the former case is needed to
deal with the latter). In our notation, Kedlaya and Umans dealt with the case s = 1 and
e = (e, . . . , e).

In the complexity analysis, we will assume that s is arbitrary, and fixed: the cost estimates
will actually hide factors exponential in s. This will however induce no harm later on, since,
as we said above, these results will be employed with s ≤ 2 in the next sections.

3.1 Useful facts

We start with some known results about topics such as multivariate polynomial evaluation.
These results will be used in this section only.

Multivariate evaluation. We consider the problem of evaluating a multivariate polyno-
mial at a set of points, as well as its transpose. The following is (up to a minor modification)
the quasi-linear result of [29, Corollary 4.3 and Theorem 7.6]. One difference is that we write
the dependency in q as log(q) plog(log(q)) rather than log(q)1+o(1); this is possible by slightly

9

modifying the proof given in that reference (by augmenting by 1 the value of a parameter t
used in the proof). The other difference is that we fix the number of variables m (the orig-
inal statement had the condition m = eo(1)), which allows us to dispense with the original
condition that e be large enough.

The result we quote holds in a boolean model, so we take Fq as a base field. Given e in
Nm and a set B ⊂ Fmq of cardinality N , we define

EvalB : Fq[X]e → FNq
F 7→ [F (b) | b ∈ B];

the transpose map is EvaltB : FNq → Fq[X]∗e.

(F4) Fix ε > 0 and a positive integer m. Given e ∈ Nm of the form e = (e, . . . , e), a
set B ⊂ Fmq of cardinality N and F ∈ Fq[X]e, one can compute EvalB(F) in (δe +
N)1+ε log(q) plogε,m(log(q)) bit operations.

(F5) Fix ε > 0 and a positive integer m. Given e ∈ Nm of the form e = (e, . . . , e),
a set B ⊂ Fmq of cardinality N and u ∈ FNq , one can compute EvaltB(u) in (δe +
N)1+ε log(q) plogε,m(log(q)) bit operations.

Fact F5 is from [29, Theorem 7.6]. That reference has the extra assumption that N = δe;
we briefly discuss how to lift this assumption. If N ≥ δe, the input of EvaltB has larger
cardinality than the output. Then, we do as in [29, Theorem 7.7], by solving dN/δee instances
of size δe and adding the results. If N ≤ δe, we do not have enough points, so we add δe−N
dummy points and pad the input vector with zeros. In both cases, the cost fits into our
claimed bound.

Structured evaluation and interpolation. Next, we discuss multivariate evaluation
and interpolation at special sets of points. The following results hold over an abstract field
F. Let e = (e1, . . . , em) be in Nm, and consider a subset of Fm of the form B = B1×· · ·×Bm,
with Bi of cardinality ei (thus, B is an m-dimensional grid). For input polynomials with
support in F[X]e, evaluation and interpolation at such a grid are simple problems.

(F6) given F ∈ F[X]e and B as above, one can compute EvalB(F) in δe plog(δe) operations
in F.

(F7) given values v = [vb | b ∈ B] and B as above, there exists a unique polynomial
F ∈ F[X]e such that EvalB(F) = v; one can compute F in δe plog(δe) operations in F.

The multivariate algorithms simply consists in applying the classical univariate algorithms,
variable by variable; see for instance [34].

Reformating a polynomial. One of the main ideas used in [29], and before it in Umans’
algorithm [44], is to simultaneously increase the number of variables and decrease the degrees
of a polynomial. Our definition slightly extends the one used there, by allowing arbitrary

10

partial degrees. In what follows, as in the previous paragraph, our polynomials will have
coefficients in an abstract field F.

Given e = (e1, . . . , em) ∈ Nm, we will be interested in mapping polynomials in F[X1, . . . , Xm]e
to polynomials in more variables, with lower degree. Let (`1, . . . , `m) be positive integers; to
each variable Xi we will associate `i new variables Xi,0, . . . , Xi,`i−1, so that the total number
of new variables is m′ = `1 + · · ·+ `m.

Consider a vector e′ = (e′1, . . . , e
′
1, . . . , e

′
m, . . . , e

′
m) ∈ Nm′ , such that each e′i is repeated `i

times. This will be our new degree vector, so that we put the constraint e′i
`i ≥ ei. Then, we

can define the F-linear map Λe,e′ by

Λe,e′ : F[X1, . . . , Xm]e → F[X1,0, . . . , Xm,`m−1]e′

Xa1
1 · · ·Xam

m 7→ X
a1,0
1,0 · · ·X

a1,`1−1

1,`1−1 · · ·X
am,0

m,0 · · ·X
am,`m−1

m,`m−1 ,

where ai,0, . . . , ai,`−1 are the coefficients of the expansion of ai in base e′i. Next, given an
F-algebra R, we define the map Λ?

e,e′ as

Λ?
e,e′ : Rm → Rm′

G = (G1, . . . , Gm) 7→ (Gi, G
e′i
i , . . . , G

e′i
`i−1

i)i=1,...,m.

The key equality is then the following: for F in F[X1, . . . , Xm]e and G in Rm, we have
F (G) = Λe,e′(F)

(
Λ?

e,e′(G)
)
. Computing Λe,e′(F) and Λ?

e,e′(G) induces a cost, which we
summarize here:

(F8) Given F in F[X1, . . . , Xm]e, one can compute Λe,e′(F) in O(δe′) operations in F. Given
G in Rm, one can compute Λ?

e,e′(G) using O(log(δe′)) multiplications in R.

The first point is obvious, as we simply fill an array of size δe′ . For the second point, for a fixed

i ≤ m, we must compute Gi, G
e′i
i , . . . , G

e′i
`i−1

i . This is done using `i exponentiations by e′i, that
is, O(`i log(e′i)) multiplications in R. The total is thus O(log(e′1

`1 · · · e′m
`m)) = O(log(δe′)).

3.2 The case e = (e, . . . , e)

We can now turn to modular composition and power projection, starting with the case where
e = (e, . . . , e). This situation is very close to [29, Theorem 3.1], as the only (conceptually
trivial) difference is that we work modulo a triangular set, instead of a single polynomial.
The proof we give follows the one given in that reference: the key idea developed in [29],
and previously in [44], is to reduce the problem to multipoint evaluation.

In the following theorem, s and m are fixed, so the cost estimate hides the dependency in
these parameters. The dependency in m could easily be controlled, by requiring m = eo(1),
as in [29, Theorem 3.1]. With respect to s, however, the cost would turn out to involve a
factor of the form 4s, due to the application of facts F1 and F2; as said before, this is not
harmful since we will use this result with s ≤ 2.

Theorem 4. Fix ε > 0 and positive integers m, s. Given a triangular set T in Fq[Y] of mul-
tidegree d ∈ Ns, one can solve the problem of multivariate modular composition modulo 〈T〉,
with parameter e = (e, . . . , e) ∈ Nm, using (δd + δe)

1+ε log(q) plogε,s,m(log(q)) bit operations.

11

Proof. Without loss of generality, we may assume that ε ≤ 1. Given a triangular set T ∈
Fq[Y1, . . . , Ys] of multidegree d = (d1, . . . , ds), (G1, . . . , Gm) in Rm

T and F in Fq[X1, . . . , Xm]e,
we will show how to compute F (G1, . . . , Gm) ∈ RT. The algorithm follows that of [29,
Theorem 3.1], up to handling reduction modulo multivariate polynomials. In all that follows,
remember that we have fixed ε, s,m, so they should be seen as constants.

The idea is to proceed by evaluation and interpolation. To enable this, we will replace
(m,d, e, q) by better suited parameters (m′,d′, e′, q′). First, we define ` = d2s/(mε)e, m′ =
`m and e′ = de1/`e. Remark that ` and m′ are bounded from above by a constant. On the
other hand, we have the lower bound m′ ≥ 2s/ε: m′ will our new number of variables; it is
large enough, but not too large.

Let next e′ be the vector (e′, . . . , e′) of length m′. Finally, let d = max(d1, . . . , ds), and
define d′ = (d′1, . . . , d

′
s), with d′i = m′e′di. Before going further, we establish the following

inequalities:

• There exists a constant c1 depending on (ε,m, s) such that δe′ ≤ c1δ
1+ε
e . Indeed, we

have δe′ = de1/`e`m. We deduce the inequalities

δe′ ≤ (e1/` + 1)`m and thus δe′ ≤ δe(1 + e−1/`)`m.

There exists c0 depending on (ε,m, s) such that (1 + e−1/`)` admits the upper bound
c0e

ε for all e, and the conclusion follows by raising to the power m and taking c1 = cm0 .

• For ε ≤ 1, there exists a constant c2 depending on (ε,m, s) such that δd′ ≤ c2δ
ε
eδd.

Indeed, we have δd′ = (m′e′)sδd. The equality e′ = δ
1/m′

e′ implies

m′e′ = m′δ
1/m′

e′ , so that (m′e′)s = m′
s
δ
s/m′

e′ .

Recall that m′ ≥ 2s/ε; then, the former equality gives (m′e′)s ≤ m′sδ
ε/2
e′ . The upper

bounds δe′ ≤ c1δ
1+ε
e ≤ c1δ

2
e enable us to conclude, by taking c2 = m′sc

ε/2
1 .

We will need to ensure that the base field contains at least m′e′d elements. The final
correction we do is thus to change q into q′, defined below; in what follows, in any case, our
base field will be Fq′ .

• If q ≥ m′e′d, we do nothing and we let q′ = q.

• Else, we find an irreducible polynomial of degree n = dlogq(m
′e′d)e over Fq and an

embedding ι : Fq → Fq′ , with now q′ = qn. By fact F3, this can be done in
√
p plog(q′)

operations in Fp. Remark that q′ ≤ qm′e′d ≤ (m′e′d)2, so that a quantity polylogarith-
mic in q′ is polylogarithmic in m′e′d, and thus in δd + δe. Since p ≤ q, and q ≤ m′e′d,√
p is O(

√
δdδe), with a constant depending on ε, s,m, so the time for building Fq′ is

(δd + δe) plogε,s,m(δd + δe) operations in Fp.
Fact F3 also shows that applying and inverting ι on its image, can be done in plog(q′)
operations in Fp. In view of what was said before, this is plogε,s,m(δd + δe) operations.
As a consequence, the sum of all costs related to ι and ι−1 will as well be (δd +
δe) plogε,s,m(δd + δe) operations in Fp.

12

We can now explain the algorithm. To compute F (G1, . . . , Gm) mod 〈T〉, we will actually
compute F ′(G′1, . . . , G

′
m′) mod 〈T〉, with

F ′ = Λe,e′(F) and (G′1, . . . , G
′
m′) = Λ?

e,e′(G1, . . . , Gm) mod 〈T〉.

We saw (Section 3.1, fact F8) that computing F ′ and (G′1, . . . , G
′
m′) takes O(δe′) operations in

Fq′ and O(log(δe′)) multiplications modulo 〈T〉. Fact F1 shows that the cost of one multipli-
cation modulo 〈T〉 is 4sδd plog(δd) operations in Fq′ , so the total is (4sδd + δe′) plog(δd + δe′)
operations in Fq′ , which we may rewrite as (δd + δe′) plogs(δd + δe′).

To compute F ′(G′1, . . . , G
′
m′) mod 〈T〉, we will first compute ϕ = F ′(G′1, . . . , G

′
m′), then

reduce it modulo 〈T〉. The reduction will raise no difficulty; the delicate step is the compu-
tation of ϕ.

This will be done by evaluation and interpolation. Remark that ϕ lies in Fq′ [Y]d′ . Thus,
we choose subsets B1, . . . , Bs of Fq′ of cardinalities d′1, . . . , d

′
s; this is possible by assumption

on q′. We first compute all values g′b = (G′1(b), . . . , G′m′(b)) ∈ Fm′q′ for b ∈ B1× · · · ×Bs, then
all values f ′b = F ′(g′b); we finally compute ϕ by interpolating the values f ′b at B1 × · · · ×Bs.

Let us postpone the cost of the evaluation of F ′ at the points g′b, and estimate all other
costs first. To compute all g′b, we evaluate each G′i at B1 × · · · ×Bs, for i ≤ m′. By fact F6,
each evaluation takes δd′ plog(δd′) operations in Fq′ , for a total of m′δd′ plog(δd′) operations
in Fq′ . Since m′ is bounded by a constant, this is δd′ plogε,s,m(δd′). By fact F7, this also
controls the cost of interpolation. Finally, since s is constant, Fact F2 implies a cost of
4sδd′ plog(δd′) = δd′ plogs(δd′) operations in Fq′ for the reduction of ϕ modulo 〈T〉.

The total cost for all previous steps is bounded from above by (δd′+δe′) plogε,s,m(δd′+δe′)
operations in Fq′ .

We finish by estimating the cost of computing all f ′b. Since m′ is bounded by a con-
stant, we can apply fact F4 with parameters e′ and N = δd′ , to get a cost of (δd′ +
δe′)

1+ε log(q′) plogε,s,m(log(q′)) bit operations. In view of the claim of the previous para-
graph, the total time fits into this bound as well. Using the bounds given previously on
δe′ and δd′ , and a quick simplification, this becomes (δd + δe)

1+3ε log(q′) plogε,s,m(log(q′)) for
ε ≤ 1.

Remember that q′ ≤ qm′e′d, so that log(q′) is at most log(q) + plogε,s,m(δeδd). The
polylogarithmic terms in δeδd admit as well an upper bound of the form c(ε,m, s)(δd + δe)

ε,
and the conclusion follows, up to replacing ε by ε/4.

We continue with a description of the transposition of this algorithm, that deals with
power projection. The reasoning follows the one of [29, section 7.2].

Theorem 5. Fix ε > 0 and positive integers m, s. Given a triangular set T in Fq[Y] of
multidegree d ∈ Ns, one can solve the problem of multivariate power projection modulo 〈T〉,
with parameter e = (e, . . . , e) ∈ Nm, using (δd + δe)

1+ε log(q) plogε,s,m(log(q)) bit operations.

Proof. We will show how to transpose the algorithm given in the proof of the previous
theorem. Seen as a linear map in F , the former algorithm replaces F by F ′ = Λe,e′(F),
performs a multipoint evaluation of F ′, then a multivariate interpolation at a grid, and
finally a reduction modulo 〈T〉.

13

We explain here how to transpose these four steps in reverse order (the other steps,
which are non-linear, are unchanged). The last step is a modular reduction. Its transpose
is described in [8] in the case s = 1 and in [35] for s = 2; in general, it suffices to transpose
step-by-step the reduction algorithm of [31], and the cost remains unchanged.

The third step is a multivariate interpolation at a grid of dimension s, which is done by
interpolating one variable after the other. The transposed algorithm thus requires to perform
s transposed univariate interpolations; we refer to [28, 8] for such an algorithm. Again, the
cost remains unchanged. The second step is a multidimensional multipoint evaluation, with
monomial support e′, at N = δd′ points; its transpose is handled by invoking fact F5 (instead
of fact F4 for the forward direction). Finally, the first step is an injection, whose transpose
is a projection, and takes linear time.

The costs of all transposed steps are thus the same as the ones for the forward direction,
and as a consequence, the overall running time admits the same bound.

3.3 The case e = (e1, e2)

The results of the previous subsection assume that e ∈ Nm has the special form (e, . . . , e).
What we will actually need in the sequel are the cases m = 1 (which is thus covered) and
m = 2, but in this case with e = (e1, e2) arbitrary. This subsection shows how to handle
this case using the former theorems. Again, the number of variables s in our triangular set
is fixed.

Theorem 6. Fix ε > 0 and a positive integer s. Given a triangular set T in Fq[Y] of
multidegree d ∈ Ns, one can solve the problem of multivariate modular composition modulo
〈T〉, with parameter e = (e1, e2) ∈ N2, using (δd + δe)

1+ε log(q) plogε,s(log(q)) bit operations.

Proof. Given a triangular set T ∈ Fq[Y1, . . . , Ys] of multidegree d, (G1, G2) in RT and F
in Fq[X1, X2](e1,e2), we will show how to compute F (G1, G2) ∈ RT. Since the order of the
variables X1 and X2 is irrelevant, we may assume that e1 ≤ e2. We will distinguish two
cases, depending on whether e2 ≤ e

1/ε
1 or not.

Suppose first that e2 ≤ e
1/ε
1 holds. Let

`1 =

⌈
1

ε

⌉
, `2 =

⌈
1

ε
loge1(e2)

⌉
and e = deε1e;

as a consequence of our assumption on e1, e2, both `1 and `2 are bounded by constants (since
ε is fixed). Define the vector e′ = (e, . . . , e) in N`1+`2 , and let further

F ′ = Λe,e′(F) and (G′1,1, . . . , G
′
1,`1
, G′2,1, . . . , G

′
2,`2

) = Λ?
e,e′(G1, G2) mod 〈T〉,

so that we have

F (G1, G2) mod 〈T〉 = F ′(G′1,1, . . . , G
′
1,`1
, G′2,1, . . . , G

′
2,`2

) mod 〈T〉.

We saw in fact F8 that F ′ and all G′i,j can be computed in O(δe′) operations in Fq and
O(log(δe′)) multiplications modulo 〈T〉. This will be negligible compared to what follows.

14

Knowing the G′i,j, we are left with an instance of modular composition modulo 〈T〉 with
parameter e′. Because `1 + `2 is bounded by a constant, we can apply Theorem 4, giving a
running time of (δd + δe′)

1+ε log(q) plogε,s(log(q)) bit operations. Next, using all equalities
written before, we obtain the upper bound

δe′ = e`1+`2 ≤ (2 eε1)
1
ε

+ 1
ε

loge1
(e2)+2 ≤ 2

1
ε

+ 1
ε2

+2δ1+ε
e

using the upper bound e ≤ 2 eε1 and, for the exponents, dxe ≤ x + 1. Thus, (δd + δe′)
1+ε

admits the upper bound 2
1
ε

+ 1
ε2

+2(δd + δe)
1+3ε for ε ≤ 1. This finishes the proof in this case

(up to replacing ε by say ε/3).

Next, we consider the case e2 ≥ e
1/ε
1 ; in particular, we have e1 ≤ δεe. Write F (X1, X2) =∑e1−1

i=0 Fi(X2)X i
1, with deg(Fi) < e2 for all i, and recall that we want to compute

F (G1, G2) mod 〈T〉 =

e1−1∑
i=0

Fi(G2)Gi
1 mod 〈T〉.

We proceed as follows:

1. We first compute Fi(G2) mod 〈T〉, for 0 ≤ i ≤ e1 − 1. Each of these computations
is an instance of modular composition modulo 〈T〉 with parameter (e2) ∈ N1, that is,
with m = 1. By Theorem 4, the cost of this step is e1(δd + e2)1+ε log(q) plogε,s(log(q))
bit operations. Since e1 ≤ δεe, this is at most (δd + δe)

1+2ε log(q) plogε,s(log(q)).

2. Then, we use these values in a Horner scheme to get the result in e1 multiplications
and additions in RT; this gives us a cost of e1δd plogs(δd) operations in Fq. Using
again the bound e1 ≤ δεe, this is (δd + δe)

1+ε plog(δd) operations in Fq, and thus
(δd + δe)

1+ε plogs(δd + δe) log(q) plog(log(q)) bit operations. The latter cost admits the
upper bound (δd + δe)

1+2ε log(q) plogε,s(log(q)).

Replacing ε by ε/2 concludes the proof.

We conclude this section with the transposed version of the former algorithm.

Theorem 7. Fix ε > 0 and a positive integer s. Given a triangular set T in Fq[Y] of
multidegree d ∈ Ns, one can solve the problem of multivariate power projection modulo 〈T〉,
with parameter e = (e1, e2) ∈ N2, using (δd + δe)

1+ε log(q) plogε,s(log(q)) bit operations.

Proof. As in the proof of the previous theorem, we assume that e1 ≤ e2 and we consider
the two cases e2 ≤ e

1/ε
1 or e2 ≥ e

1/ε
1 . In the forward direction, both cases involve modular

composition (which was handled using Theorem 4), so the transpose which rely on power
projection.

• In the first case, the linear part of the algorithm amounts to replacing F by F ′ and
solving an instance of modular composition modulo 〈T〉, with parameter e′; we use
Theorem 5 to do the transposed operation, power projection, in the same amount of
time as in the forward direction.

15

• In the second case, the first step consists in solving e1 instances of modular composition
modulo 〈T〉, with parameter (e2); their transposes are all handled by Theorem 5.
The second step is simply Horner’s rule modulo 〈T〉, and can be transposed without
difficulty (see e.g. [7]).

In both cases, the costs of all transposed steps are the same as the ones for the forward
direction, so the overall running time admits the same bound.

4 Representations of zero-dimensional ideals

In this section, we change our focus: we discuss representations of zero-dimensional algebraic
sets using either univariate polynomials, triangular sets, or an intermediate data structure.

For our discussion, we consider a zero-dimensional ideal I in F[Y] = F[Y1, . . . , Ys], where
F is a perfect field; we do not necessarily assume that I is defined by a triangular set for
any order. Finally, we let R = F[Y]/I be the residue class ring modulo I, and let δ be the
dimension of the F-vector space R.

To A ∈ R, we associate the multiplication-by-A endomorphisms of R, written MA. The
minimal polynomial and the characteristic polynomial of A, respectively written mA ∈ F[Y]
and χA ∈ F[Y], are then defined as those of MA. Let V be the zero-set of I in Fs, where F
is an algebraic closure of F. Then, when I is radical, because of our perfectness assumption,
we have the factorization (over F)

χA =
∏
y∈V

(Y − A(y)) (1)

and mA is the squarefree part of χA. Finally, the trace tr(A) is, by definition, the trace of
the endomorphism MA; note that the trace is an F-linear form.

4.1 Primitive representations

Primitive representations will allow us to work modulo I using only univariate polynomials.
To start with, we say that A ∈ R is a primitive element if the powers of A generate R. This
is the case if and only if χA = mA; when I is radical, this is the case if and only if χA has no
multiple root. In all that follows, we will be concerned only with primitive elements of the
form A =

∑
i≤s `iYi (as in many previous works, such as [20, 3, 21, 38, 22]). The following

well-known result gives a condition on such an A to be a primitive element.

Lemma 8. If I is radical, there exists a non-zero homogeneous polynomial ∆ in F[L1, . . . , Ls]
of degree less than δ2/2 such that if ∆(`1, . . . , `s) 6= 0, A = `1Y1 + · · · + `sYs is a primitive
element.

Proof. The argument is well-known: A = `1Y1 + · · ·+ `sYs is a primitive element if and only
if the form (y1, . . . , ys) 7→ `1y1 + · · · + `1ys separates the zeros of I, that is, if `1(y1 − y′1) +
· · · + `s(ys − y′s) is non-zero for all y and y′ distinct zeros of I. Thus, it suffices to take for
∆ the product of the linear forms L1(y1 − y′1) + · · ·+ Ls(ys − y′s), for all pairs (y, y′); ∆ has

16

coefficient in F, as it is the square root of the discriminant of
∏

y∈V (T − L1y1 − · · · − Lsys),
which has coefficients in F. There are at most δ(δ−1)/2 such pairs (y, y′), and the conclusion
follows.

When A =
∑

i≤s `iYi is a primitive element, R and F[Y]/〈P 〉 are isomorphic, with P =
mA; then, deg(P) = δ. In this case, a primitive representation P = (P,V, `) contains
the information necessary to encode this isomorphism: it consists of polynomials P and
V = (V1, . . . , Vs) in F[Y], and ` = (`1, . . . , `s) in Fs, with deg(Vi) < δ for all i, such that the
mappings

ψP : R → F[Y]/〈P 〉
Y1, . . . , Ys 7→ V1, . . . , Vs

and
ϕP : F[Y]/〈P 〉 → R

Y 7→
∑

i≤s `iYi

are isomorphisms, inverses of one another. In particular, Y =
∑

i≤s `iVi.

4.2 Mixed representations

We continue our discussion, with the purpose of introducing an intermediate data structure,
between triangular sets and primitive representations.

We start with a variation on the notion of primitive element. For j ≤ s, let Ij be the
ideal I ∩ F[Y1, . . . , Yj] and let Rj be the residue class ring F[Y1, . . . , Yj]/Ij.

We say that A ∈ R is a primitive element of level j if A is in Rj, and if the powers of A
generate Rj. The following lemma will be helpful to quantify linear forms that are primitive
elements of level j; the proof is the same as that of Lemma 8.

Lemma 9. Suppose that I is radical. Then for j ≤ s, there exists a non-zero homogeneous
polynomial ∆j in F[L1, . . . , Lj] of degree less than δ2/2 such that if ∆j(`1, . . . , `j) 6= 0,
A = `1Y1 + · · ·+ `jYj is a primitive element of level j.

A mixed representation M = (P,V, `) of I of format (j, s−j+1) consists in a triangular
set P = (P, Pj+1, . . . , Ps) in F[Y, Yj+1, . . . , Ys], for the order Y < Yj+1 < · · · < Ys, some
polynomials V = (V1, . . . , Vj) in F[Y] and ` = (`1, . . . , `j) in Fj, such that we have mutually
inverse isomorphisms

ΨM : R → RP

Y1, . . . , Yj 7→ V1, . . . , Vj
Yj+1, . . . , Ys 7→ Yj+1, . . . , Ys.

and

ΦM : RP → R

Y 7→
∑

i≤j `iYi
Yj+1, . . . , Ys 7→ Yj+1, . . . , Ys.

In particular,
∑

i≤j `iVi = Y . Also, in this case,
∑

i≤j `iYi is a primitive element of level j,
Rj is isomorphic to F[Y]/〈P 〉, and Rj′ is isomorphic to F[Y, Yj+1, . . . , Yj′]/〈P, Pj+1, . . . , Pj′〉
for j′ > j.

In other words, a mixed representation provides us with a primitive representation for the
first j variables, and has a triangular shape for the last variables. The “format” (j, s− j+ 1)
provides a quick way to know how many elements are in V and ` (here, j), and in P (here,
s − j + 1). When j = s, a mixed representation is thus the same thing as a primitive
representation. When j = 1, if we additionally suppose that `1 = 1, we have V1 = Y , so

17

up to renaming Y as Y1, ΨM maps Y1, . . . , Ys to themselves, and P is a triangular set that
generates I.

The following technical lemma will be useful in Section 6.

Lemma 10. Suppose that I is radical and that |F| ≥ δ2. Then for j ≤ s, the following are
equivalent:

• the ideal I admits a mixed representation of format (j, s− j + 1)

• for i = j, . . . , s−1, there exists a positive integer di+1 such that Ri+1 is a free Ri-module
with basis 1, Yi+1, . . . , Y

di+1−1
i+1 .

Proof. Suppose that I admits a mixed representation M = (P,V, `) of format (j, s− j+ 1),
with polynomials P = (P, Pj+1, . . . , Ps) in variables Y, Yj+1, . . . , Ys. Through ΨM , we see
that for i = j, . . . , s − 1, Ri+1 has the form Ri[Yi+1]/〈Pi+1〉; the second assertion in the
lemma follows.

Conversely, we always have that Ri+1 = Ri[Yi+1]/Ii+1. Suppose Ri+1 is a free Ri-module

with basis 1, Yi+1, . . . , Y
di+1−1
i+1 . Then, there exists a polynomial Pi+1 in Ri[Yi+1], monic

of degree di+1 in Yi+1, that belongs to Ii+1 (this is the characteristic polynomial of the
multiplication by Yi+1); one verifies that Pi+1 actually generates Ii+1 in Ri[Yi+1]. As a
consequence, we get that R = Rj[Yj+1, . . . , Ys]/〈Pj+1, . . . , Ps〉. Using our assumption on the
cardinality of F, Lemma 9 ensures the existence of a primitive element of level j of the form
`1Y1 + · · · + `jYj (since F is large enough, there must be a point in Fj where ∆j does not
vanish); this allows us to write Rj ' F[Y]/〈P 〉, and the conclusion follows.

4.3 Trace formulas

Finally, we describe how using trace formulas enables one to perform various conversions.
The following claims are classical: see e.g. [43] for similar results using another linear form
and [38] for a more general case, where I is not supposed to be radical.

Lemma 11. Suppose that I is radical and let A and B be in R. Then, one can do the
following in δ plog(δ) operations in F:

• given (tr(Aj))j<2δ, decide whether A is a primitive element, and if so, compute its
minimal polynomial mA;

• given mA and (tr(BAj))j<δ, compute a polynomial V ∈ F[Y] of degree less than δ, such
that if B can be expressed as a polynomial in A, then B = V (A) in R.

Remark that in the second item, we do not suppose that A is a primitive element, so that
B may not be expressible in the form V (A); the point is that if it is the case, we can find
V . We do not include the cost of the verification that B = V (A), since this would involve
modular composition, which we do not know how to do in time δ plog(δ).

18

Proof. We start from the following classical formula (which is essentially a generating series
version of Newton-Girard’s identities)∑

j≥0

tr(Aj+1)Y j ∈ F[[Y]] = − 1

revδ(χA)

d revδ(χA)

dY
, (2)

where we write revd(P) = Y dP (1/Y) for any P ∈ F[Y] and d ≥ 0. To recover χA using
this equality, algorithms using Newton’s formula (such as Rouillier’s [38]) require divisions
by integers 2, . . . , δ, which may not be possible in small characteristic. Instead, we will use
the Berlekamp-Massey algorithm; it allows us to compute the minimal polynomial µA of the
sequence (tr(Aj+1)) from the values (tr(Aj))j<2δ.

Since I is radical, A is a primitive element if and only if χA has no multiple root, or
equivalently if revδ(χA) has no multiple root, or equivalently if the rational function in
Equation (2) is reduced. This is the case if and only if µA has degree δ; when this is the case,
we have µA = mA = χA. This proves the first point, since Berlekamp-Massey’s algorithm
runs in time δ plog(δ).

The second point is in [43, Theorem 5], up to an inconsequential difference (that result
is proved using another linear form than the trace).

The previous lemma allows one to compute a primitive representation by means of trace
computations. We now discuss how to compute a triangular representation. While the idea
of using trace formulas remains, the computations are more involved. For this reason, we
consider only bivariate situations. The following result is from [35, Section 3]; it requires a
stronger assumption on the characteristic than the previous lemma (as we use a bivariate
version of Newton’s identities). This assumption may most likely be lifted, but we leave this
generalization to future work.

Lemma 12. Suppose that I ⊂ F[Y1, Y2] is radical and let p be the characteristic of F. If
p > δ, then one can do the following using δ plog(δ) operations in F:

• given (tr(Y j
1))j<δ, verify whether I is generated by a triangular set (T1(Y1), T2(Y1, Y2)),

and if so compute T1;

• given T1 and (tr(Y i
1Y

j
2))i<d1,j<d2, with d1 = deg(T1) and d2 = δ/d1, compute T2.

5 Proof of Theorem 1

We will now prove our first main theorem, on the cost of multiplication, inversion, norm
computation, modular composition and power projection modulo a triangular set. The algo-
rithms in this section will solve these problems by computing a primitive representation, since
the questions mentioned in Theorem 1 can all be solved in quasi-linear time for univariate
polynomials.

The basic idea to convert to a primitive representation uses trace formulas (by means of
Lemma 11); it mainly amounts to solving some instances of power projection and modular
composition. The delicate question is how to perform efficiently these power projections,

19

or modular compositions. Section 3 gave algorithms that are efficient when the number of
variables s is fixed, but not when s is allowed to grow (recall that the estimates of that
section hide an exponential dependency in s).

To solve this issue, we will not proceed directly. The key step is to first solve the problem
for s = 2, that is, for bivariate triangular sets, as this alleviates the issue of the exponential
cost in s; this is done in Subsection 5.2. For higher values of s, with T = (T1, . . . , Ts), we will
then first deal with (T1, T2), finding a univariate polynomial P such that Fq[Y1, Y2]/〈T1, T2〉 '
Fq[Y]/〈P 〉, then continue with (P, T3), and so on. This is done in Subsection 5.3. The proof
of Theorem 1 is then given in Subsection 5.4. First, though, we show the details of our
conversion algorithm on an example in three variables.

5.1 A worked example

The following example, with s = 3 over F101, will be used in this section and in the next
one. We start from T = (T1, T2, T3) given by

T

∣∣∣∣∣∣
T3 = Y 2

3 + 100Y1

T2 = Y 2
2 + Y1

T1 = Y 2
1 + 1.

We will show how to establish that Y1 + Y2 + Y3 is a generator of RT = F101[Y1, Y2, Y3]/〈T〉,
as well as expressions for Y1, Y2, Y3 in terms of Y .

As said before, we do not proceed directly: the key is to first solve the problem for
(T1, T2). This is done by introducing the linear combination Y1 + Y2, and using a bivariate
change of order algorithm (coming from Lemma 11) to yield the isomorphism

F101[Y1, Y2]/〈T1, T2〉 → F101[Y]/〈P 〉
Y1 7→ V1

Y2 7→ V2

Y1 + Y2 ←[Y,

with P = Y 4 + 2Y 2 + 97Y + 2 and

V1 = 68Y 3 + 34Y 2 + 2Y + 32

V2 = 33Y 3 + 67Y 2 + 100Y + 69.

Re-introducing Y3, this can be readily extended to the following isomorphism

F101[Y1, Y2, Y3]/〈T〉 → F101[Y, Y3]/〈T′〉
Y1 7→ V1

Y2 7→ V2

Y3 7→ Y3

Y1 + Y2 ←[Y,

where T′ is the bivariate triangular set (P (Y), T3(V1, V2, Y3)) in F101[Y, Y3]. Next, we apply

20

the bivariate algorithm to T′; this gives the isomorphism

F101[Y, Y3]/〈T′〉 → F101[Z]/〈P ′〉
Y 7→ V ′

Y3 7→ V ′3
Y + Y3 ←[Z,

with this time P ′ = Z8 + 4Z6 + 99Z4 + 52Z2 + 9 and

V ′ = 51Z7 + 30Z6 + 32Z5 + 30Z4 + 48Z3 + 14Z2 + 3Z + 78

V ′3 = 50Z7 + 71Z6 + 69Z5 + 71Z4 + 53Z3 + 87Z2 + 99Z + 23.

Composing the previous results, this leads to the following isomorphism, which is what we
were looking for:

F101[Y1, Y2, Y3]/〈T〉 → F101[Z]/〈P ′〉
Y1 7→ W1

Y2 7→ W2

Y3 7→ W3

Y1 + Y2 + Y3 ←[Z,

with

W1 = V1(V ′) mod P ′ = Z7 + 64Z5 + 96Z3 + 5Z

W2 = V2(V ′) mod P ′ = 50Z7 + 30Z6 + 69Z5 + 30Z4 + 53Z3 + 14Z2 + 99Z + 78

W3 = V ′3 = 50Z7 + 71Z6 + 69Z5 + 71Z4 + 53Z3 + 87Z2 + 99Z + 23.

5.2 The bivariate case

In this subsection, we handle the bivariate case only. Let Fq be our base field and consider
a triangular set T = (T1, T2) in Fq[Y1, Y2], of multidegree d = (d1, d2). In the following
proposition, we give cost estimates on the computation of a primitive representation P =
(P, `,V), and on the cost of applying ψP : RT → Fq[Y]/〈P 〉 and its inverse ϕP . We
must make the assumption that q is large enough, so as to be sure that there exist enough
primitive elements of the requested form. Then, the algorithm to find P is Las Vegas: we
choose the candidate primitive element at random, but we can always verify whether our
choice is correct.

We choose additionally to set one of the `i to 1, as this will be useful in the next section.

Proposition 13. For ε > 0, one can do the following in an expected δ1+ε
d log(q) plogε(log(q))

bit operations: for T = (T1, T2) of multidegree d = (d1, d2) in Fq[Y1, Y2], such that q ≥ δ2
d,

• determine whether T is squarefree;

• if so, after choosing either `1 = 1 or `2 = 1, compute a primitive representation
P = (P,V, `) of T, with ` = (`1, `2).

With notation as before, one can do the following in δ1+ε
d log(q) plogε(log(q)) bit operations:

21

• given P and B in RT, compute ψP(B) ∈ Fq[Y]/〈P 〉;

• given P and B in Fq[Y]/〈P 〉, compute ϕP(B) ∈ RT.

Proof. To test whether T generates a radical ideal, it is enough to compute the gcd of T1

and dT1/dY1, as well as a gcd of T2 and ∂T2/∂Y2 modulo T1, and check whether all are
constant. The first computation is a simple application of the half-gcd algorithm, and takes
time d1 plog(d1). The second one is more delicate, as it involves the half-gcd algorithm with
coefficients modulo T1, and T1 may not be irreducible: this question is treated in [1], with
an algorithm of cost δd plog(δd), with δd = d1d2. This settles the first point.

To determine whether A = `1Y1 + `2Y2 is a primitive element, we compute the traces
(tr(Aj))j<2δd and apply Lemma 11. Computing these traces requires to first compute the
traces of the monomial basis modulo 〈T〉: it is shown in [35] that this can be done in quasi-
linear time. Then, we are left with an instance of power projection with parameter e = (2δd).
Invoking Theorem 3, this takes δ1+ε

d log(q) plogε(log(q)) bit operations; the other δd plog(δd)
Fq-operations that appear in Lemma 11 are not more expensive. Because q ≥ δ2

d, Lemma 8
shows that at least half of the linear combinations A = `1Y1 + `2Y2, with either `1 = 1 or
`2 = 1, are primitive elements. Thus, we expect to have to go through this process at most
twice.

If A is a primitive element, we continue by computing tr(Y1A
i)i<δd and tr(Y2A

i)i<δd ;
again, this is done by invoking Theorem 3. From these values, Lemma 11 shows how to
deduce V1 and V2 in quasi-linear time. Thus, we have obtained P = (P, (V1, V2), `), proving
the second point.

Given P and B in RT, computing ψP(B) amounts to computing B(V1, V2) mod P . This
is an instance of modular composition modulo P with parameter d ∈ N2, so it can be done
in δ1+ε

d log(q) plogε(log(q)) bit operations by Theorem 3. This proves the third point.
Finally, given P and B in Fq[Y]/〈P 〉, computing ϕP(B) amounts to computing B(`1Y1+

`2Y2) mod 〈T〉. This is an instance of modular composition modulo 〈T〉 with parameter
(δd) ∈ N1; it can be done in δ1+ε

d log(q) plogε(log(q)) bit operations by Theorem 3. This
proves the last point.

5.3 The general case

We will now extend the former construction to a higher number of variables. Suppose
thus that s is arbitrary, and let T = (T1, . . . , Ts) be a triangular set of multidegree d =
(d1, . . . , ds) in Fq[Y], with Y = Y1, . . . , Ys. As explained before, our idea is to deal first with
(T1, T2), and continue this way until there is only one variable left. We start from a primitive
representation P = (P, (V1, V2), (`1, `2)) of (T1, T2); as in the previous subsection, we choose
to add the constraint that either `1 = 1 or `2 = 1, for future use. We can then define

P = (P, P3 = T3(V1, V2, Y3) mod P, . . . , Ps = Ts(V1, V2, Y3, . . . , Ys) mod P).

This is a triangular set in Fq[Y, Y3, . . . , Ys] of multidegree d′ = (d1d2, d3, . . . , ds) ∈ Ns−1.
It follows from this construction that we have the following isomorphisms, inverse of one

22

another:

RT → RP

Y1, Y2 7→ V1, V2

Y3, . . . , Ys 7→ Y3, . . . , Ys

and
RP → RT

Y 7→ `1Y1 + `2Y2

Y3, . . . , Ys 7→ Y3, . . . , Ys.

In other words, we have obtained a mixed representation M of format (2, s − 1) of T, and
the mappings above are none other than the isomorphisms ΨM and ΦM associated with it.
The following lemma summarizes all the costs involved.

Lemma 14. Fix ε > 0. Then, for d in Ns and T = (T1, . . . , Ts) of multidegree d =
(d1, . . . , ds) in Fq[Y1, . . . , Ys], such that q ≥ δ2

d, one can do the following in an expected
s δ1+ε

d log(q) plogε(log(q)) bit operations:

• determine whether 〈T1, T2〉 is a radical ideal;

• if so, after choosing either `1 = 1 or `2 = 1, compute a mixed representation M =
(P,V, `) of T of format (2, s− 1), with ` = (`1, `2).

With notation as before, one can do the following in δ1+ε
d log(q) plogε(log(q)) bit operations:

• given M and B in RT, compute ΨM (B) ∈ RP;

• given M and B in RP, compute ΦM (B) ∈ RT.

Proof. The first point was proved in Proposition 13, as well as the estimate on the cost
of computing a primitive representation P = (P, (V1, V2), (`1, `2)) of (T1, T2), with either
`1 = 1 or `2 = 1. To compute all other polynomials in P, we need to apply some modular
compositions: for i ≤ s, Pi is obtained applying ψP to all coefficients of Ti, assuming
we view Ti as a polynomial in Y3, . . . , Yi. This requires d3 · · · di applications of ψP for Ti,
for a total of d3 + · · · + d3 · · · ds ≤ sd3 · · · ds applications. Each application takes time
(d1d2)1+ε log(q) plogε(log(q)) bit operations by Proposition 13. This proves the second point,
since (d1d2)(d3 · · · ds) = δd. The third and fourth points are proved similarly.

Our idea is now straightforward: continue is a similar manner with P, introducing a
primitive representation for (P, P3), until we are left with univariate polynomials.

Proposition 15. Fix ε > 0. Then, for d in Ns and T = (T1, . . . , Ts) of multidegree d =
(d1, . . . , ds) in Fq[Y1, . . . , Ys], such that q ≥ δ2

d, one can do the following in an expected
s2 δ1+ε

d log(q) plogε(log(q)) bit operations:

• determine whether T is a radical ideal;

• if so, compute Ms−1, . . . ,M1, with Mi = (Pi,Vi, `i), such that

– Ms−1 is a mixed representation of T, of format (2, s− 1),

– for i = s− 2, . . . , 1, Mi is a mixed representation of Pi+1, of format (2, i),

– for i = s− 1, . . . , 1, `i = (`i,1, `i,2), with either `i,1 = 1 or `i,2 = 1.

23

With notation as before, let P be the minimal polynomial of M1, let Ψ = ΨM1 ◦ · · · ◦ΨMs−1

and let Φ be its inverse. Then, one can do the following in s δ1+ε
d log(q) plogε(log(q)) bit

operations:

• given Ms−1, . . . ,M1 and B in RT, compute Ψ(B) ∈ Fq[Y]/〈P 〉;

• given Ms−1, . . . ,M1 and B in Fq[Y]/〈P 〉, compute Φ(B) ∈ RT.

Finally, one can do the following in s2 δ1+ε
d log(q) plogε(log(q)) bit operations:

• given Ms−1, . . . ,M1, compute a primitive representation P = (P,V, `) for T such
that Ψ = ΨP and Φ = ΦP .

Besides, if we choose a priori j ≤ s, one can ensure that ` = (`1, . . . , `s) is such that `j = 1.

Proof. To compute Ms−1, . . . ,M1, it suffices to apply s times Lemma 14. The cost of
applying Ψ and Φ follows similarly from Lemma 14. At this point, to determine P =
(P,V, `), it suffices to compute V = (V1, . . . , Vs) and ` = (`1, . . . , `s). The Vi are obtained
by computing Ψ(Yi), thus requiring s applications of Ψ.

Finally, to compute (`1, . . . , `s), and ensure `j = 1, let us determine the image of Y by
Φ: a quick check shows that it is given by Y 7→ `1,1 · · · `s−1,1Y1 + `1,1 · · · `s−2,1`s−1,2Y2 + · · ·+
`1,1`2,1`3,2Ys−2 +`1,1`2,2Ys−1 +`1,2Ys, so that the coefficient of Yj is `1,1 · · · `s−j,1`s−j+1,2 (where
undefined terms are set to 1). Choosing `1,1 = · · · = `s−j,1 = 1 and `s−j+1,2 = · · · = `s−1,2 = 1
ensures that this coefficient equals 1.

5.4 Proof of Theorem 1

We will finally use the former results to solve the questions stated in Theorem 1; in all that
follows, ε > 0 is fixed. We start from a triangular set T of multidegree d = (d1, . . . , ds) in
Fq[Y1, . . . , Ys]. To solve the questions of Theorem 1, we will want to apply Proposition 15.
To apply this result, we need to ensure that the base field Fq has cardinality at least δ2

d:

• if q ≥ δ2
d, we just let q′ = q,

• if q < δ2
d, we use fact F3 to build an extension Fq′ of Fq of degree dlogq(δ

2
d)e, and embed

all coefficients of T in Fq′ ; remark that q′ ≤ qδ2
d ≤ δ4

d. From fact F3, the cost of finding
the embedding is

√
p plog(q′) Fp-operations, where p is the characteristic of Fq; this fits

into the bound δd plog(δd) Fp-operations. The cost of mapping an element of Fq to Fq′ ,
and back, is plog(δd) Fp-operations. Thus, in all problems, the costs of all embeddings
and of all back conversions will fit into the bound δd plog(δd), or (δd + δe) plog(δd) for
modular composition and power projection.

From now on, our base field is Fq′ . For all questions below, we start by testing whether T
is squarefree, and if so, we compute a primitive representation P = (P,V, `) of T (over
Fq′). By Proposition 15, this can be done in an expected s2 δ1+ε

d log(q′) plogε(log(q′)) bit
operations. Applying ΨP and its inverse can then be done in time s δ1+ε

d log(q′) plogε(log(q′)),
by the same proposition. This setup allows us to perform operations in RT by mapping to
Fq′ [Y]/〈P 〉, solving the univariate problem, and mapping back to RT:

24

• Multiplication is straightforward, since multiplication modulo P can be done in δd plog(δd)
operations in Fq′ .

• The same holds for inversion: to test whether A ∈ RT is a unit, and invert it if
possible, we will attempt to invert A′ = ΨP(A) modulo P , and pull back the inverse.
This amounts to computing the extended gcd of A′ and P : A is a unit in RT if and
only if this gcd is 1, in which case the cofactor provides the desired inverse. The cost
of extended gcd computation is again δd plog(δd) operations in Fq′ .

• Computing the norm of A modulo 〈T〉 works in a similar manner. Recall that the
norm is the determinant of the endomorphism MA of multiplication by A modulo 〈T〉.
Given A′ = ΨP(A), the norm of A is thus given by the resultant of A′ and P . The
cost of computing this resultant is δd plog(δd) operations in Fq′ .

• We consider next modular composition: given (G1, . . . , Gm) in Rm
T , e ∈ Nm and F in

Fq[X1, . . . , Xm]e, we want to compute F (G1, . . . , Gm) ∈ RT. As in the theorem, we
will work under the assumption that m ≤ 2. Then, we get our result by computing

ΦP

(
F (G′1, . . . , G

′
m) mod P

)
,

with G′i = ΨP(Gi). This requires m+ 1 ≤ 3 applications of ΦP or ΨP , and a modular
composition modulo P . The latter can be done in (δd + δe)

1+ε log(q′) plogε(log(q′)) bit
operations by Theorem 3.

• We use a similar strategy for power projection. Given (G1, . . . , Gm) in Rm
T , e ∈ Nm and

τ in R∗T, we want to compute the values τ(Ga1
1 · · ·Gam

m), for 0 ≤ ai < ei, i ≤ m. Again,
we suppose that m ≤ 2. Then, the algorithm is the transpose of the one for modular
composition: we compute all G′i as above, then the linear form τ ′ = Φt

P(τ) defined
modulo P , and obtain our result by computing all τ ′(G′1

a1 · · ·G′m
am) by univariate

power projection.

The cost analysis is the same as before; the only missing ingredient is the cost of apply-
ing the transpose map Φt

P . It is however straightforward to transpose the algorithm
we gave for Φ. Indeed, this algorithm boils down to s − 1 applications of maps of
the form ΦMi

. Each of them is done through modular composition with m = 1 and
s = 2. The transposed map uses power projection with the same parameters; using
Theorem 3, we obtain the same asymptotic estimate as in the forward direction.

Summing all contributions, and using the upper bound plog(δd) ≤ cδεd, for some constant c
depending on ε, we see that all costs are of the form s2 δ1+ε

d log(q′) plogε(log(q′)), or s2 (δd +
δe)

1+ε log(q′) plogε(log(q′)) for those involving a parameter e.
It remains to express these estimates in terms of log(q) instead of log(q′). In any case,

log(q′) is at most log(q)+2 log(δd), so that any cost of the form log(q′) plogε(log(q′)) is actu-
ally in δεd log(q) plogε(log(q)). Up to replacing ε by ε/2 everywhere, this proves Theorem 1.

25

6 Proof of Theorem 2

We will now answer the last question, change of order, thereby proving Theorem 2. In the
previous section, the approach consisted in introducing successive mixed representations to
progressively convert from a triangular representation to a univariate one; here, we will go in
the opposite direction. As before, we start with a worked example. Then, we deal with the
algorithm in the bivariate case, and extend the results to an arbitrary number of variables
in a second step.

6.1 A worked example

We first illustrate our strategy on the example of the previous section. We are given the
triangular set

T

∣∣∣∣∣∣
Y 2

3 + 100Y1

Y 2
2 + Y1

Y 2
1 + 1,

for the order Y1 < Y2 < Y3, defined over F101. We will show how to determine a triangular
set T′ for the order Y3 < Y1 < Y2 that generates the same ideal as T. In the previous section,
up to a slight change of notation, we obtained the isomorphism

F101[Y1, Y2, Y3]/〈T〉 → F101[Y]/〈P 〉
Y1 7→ V1

Y2 7→ V2

Y3 7→ V3

with P = Y 8 + 4Y 6 + 99Y 4 + 52Y 2 + 9 and

V1 = Y 7 + 64Y 5 + 96Y 3 + 5Y

V2 = 50Y 7 + 30Y 6 + 69Y 5 + 30Y 4 + 53Y 3 + 14Y 2 + 99Y + 78

V3 = 50Y 7 + 71Y 6 + 69Y 5 + 71Y 4 + 53Y 3 + 87Y 2 + 99Y + 23.

This will be our starting point here; all operations that follow are either bivariate change of
orders, or modular compositions.

Introducing Y2. Let A = V1 +V3: this plays the role of a “random” linear combination of
V1, V3, that correspond to the lowest variables for the new order. Since A has been chosen
“random” enough, we can express V1 and V3 as polynomials in A: Lemma 11 gives us two
polynomials V ′1 and V ′3 in F101[Z] such that V1 = V ′1(A) mod P and V3 = V ′3(A) mod P .
Explicitly, we have V ′1 = 68Z3 + 67Z2 + 2Z + 69 and V ′3 = 33Z3 + 34Z2 + 100Z + 32.

Consider now the polynomials (P (Y), Z − A(Y)), which form a triangular set for the
order Y < Z. Using trace computations as in Lemma 12, we can determine a triangular set
(Q(Z), R(Z, Y)) for the order Z < Y , that generates the same ideal; explicitly, we get∣∣∣∣ R = Y 2 + 99Y Z + 68Z3 + 68Z2 + 2Z + 69

Q = Z4 + 2Z2 + 4Z + 2.

26

At this point, we have thus determined an isomorphism

F101[Y]/〈P 〉 → F101[Z, Y]/〈Q(Z), R(Z, Y)〉
Y 7→ Y
A 7→ Z

which maps V1 to V ′1 and V3 to V ′3 . Remembering that Y = V1 +V2 +V3 = A+V2, we deduce
that the image of V2 is Y − Z.

This leads us to define S = R(Z, Y + Z) mod Q, or, explicitly, S = Y 2 + 68Z3 + 67Z2 +
2Z + 69. Then, we get the isomorphism

F101[Y]/〈P 〉 → F101[Z, Y]/〈Q(Z), S(Z, Y)〉
Y 7→ Y + Z
A 7→ Z
V2 7→ Y.

Remembering that F101[Y]/〈P 〉 is isomorphic to F101[Y1, Y2, Y3]/〈T〉, we finally obtain

F101[Y1, Y2, Y3]/〈T〉 → F101[Z, Y]/〈Q(Z), S(Z, Y)〉
Y1 7→ V ′1(Z)
Y2 7→ Y
Y3 7→ V ′3(Z).

At this stage, we have obtained a representation by means of the bivariate triangular set
(Q(Z), S(Z, Y)), with Y ' Y2 as highest variable.

Introducing Y1. To reintroduce Y1, the process is similar, except that we are left to work
modulo Q. Consider the triangular set (Q(Z), T −V ′3(Z)), and perform as before a bivariate
change of order; we obtain (F (T), G(T, Z)), with∣∣∣∣ G = Z + 100T 2 + 100T

F = T 4 + 1.

Thus, we have the isomorphism

F101[Z]/Q → F101[T, Z]/〈F (T), G(T, Z)〉
Z 7→ Z
V ′3 7→ T ;

since Z = V ′1 + V ′3 , the image of V ′1 is Z − T . As before, this leads us to introduce H =
G(T, Z + T) mod F = Z + 100T 2. This gives us an isomorphism

F101[Z]/Q → F101[T, Z]/〈F (T), H(T, Z)〉
Z 7→ Z + T
V ′3 7→ T
V ′1 7→ Z.

27

Finally, we let K(T, Z, Y) be obtained by applying the former map coefficient-wise to
S(Z, Y); explicitly, we obtain the polynomial K(T, Z, Y) = Y 2 + T 2, and the isomorphism

F101[Z, Y]/〈Q(Z), S(Z, Y)〉 → F101[T, Z, Y]/〈F (T), H(T, Z), K(T, Z, Y)〉
V ′3 7→ T
V ′1 7→ Z
Y 7→ Y.

Taking into account the result of the previous paragraph, we deduce by composition the
isomorphism

F101[Y1, Y2, Y3]/〈T〉 → F101[T, Z, Y]/〈F (T), H(T, Z), K(T, Z, Y)〉
Y3 7→ T
Y2 7→ Y
Y1 7→ Z.

Renaming (T, Z, Y) as (Y3, Y1, Y2), we see that our result is

T′

∣∣∣∣∣∣
K(Y3, Y1, Y2) = Y 2

2 + Y 2
3

H(Y3, Y1) = Y1 + 100Y 2
3

F (Y3) = Y 4
3 + 1.

6.2 The bivariate case

The former example shows the importance of bivariate change of order. In this subsection,
we give the details of the actual operation we need. We start from a univariate polynomial
P in Fq[Y], and A, V ∈ Fq[Y], both reduced modulo P ; our question is to determine whether
there exists an isomorphism of the form

Fq[Y]/〈P 〉 → Fq[Z, Y]/〈Q(Z), S(Z, Y)〉
A 7→ Z
V 7→ Y,

where (Q(Z), S(Z, Y)) is a bivariate triangular set in Fq[Z, Y]. We will say that hypothesis
(h) holds if such a triangular set exists.

Our purpose is to decide whether (h) holds, and if so, to compute (Q(Z), S(Z, Y)).
To help, we will additionally impose the relation Y = V + B(A) mod P , for some given
polynomial B in Fq[Z]. Then, (h) holds if and only if there exists an isomorphism of the
form

Fq[Y]/〈P 〉 → Fq[Z, Y]/〈Q(Z), R(Z, Y)〉
A 7→ Z
Y 7→ Y,

the polynomials R and S being related by S(Z, Y) = R(Z, Y + B) mod Q. Equivalently,
(h) holds if and only if the ideal 〈P (Y), Z − A(Y)〉 is generated by a triangular set of the
form (Q(Z), R(Z, Y)). The following lemma shows how to use these remarks to solve our
question; we rely on trace computations, where all traces are computed modulo P .

28

Lemma 16. Let d = deg(P), and suppose that q = pn, with p prime and p > d, and that
P is squarefree. Given B such that Y = V + B(A) mod P , one can do the following using
d plog(d) operations in Fq:

• given (tr(Aj))j<d, verify whether (h) holds, and if so compute Q,

• given Q and (tr(Y iAj))i<d1,j<d2, with d2 = deg(Q) and d1 = d/d2, compute S.

Proof. The proof is a consequence of Lemma 12. In view of the remarks above, given
(tr(Aj))j<d, we can use that lemma to verify whether (h) holds (and compute Q) using
d plog(d) operations in Fq. If the condition holds, from the traces (tr(Y iAj))i<d1,j<d2 , we
deduce R in a similar amount of time. Finally, S is deduced by a polynomial shift, with
coefficients taken modulo Q. Using the divide-and-conquer algorithm of [17], this takes time
d plog(d) as well.

The following equivalent form of assumption (h) will be useful in the next subsection.
The proof is similar to that of Lemma 10.

Lemma 17. Let SA be the Fq-algebra generated by A in Fq[Y]/〈P 〉. Then assumption (h)
holds if and only if Fq[Y]/〈P 〉 is a free SA-module, generated by powers of V of the form
1, V, . . . , V e.

Proof. Since Y = V + B(A), the second condition is equivalent to Fq[Y]/〈P 〉 being a free
SA-module, generated by powers of Y of the form 1, Y, . . . , Y e. We use this latter condition
in the rest of the proof.

Let I be the ideal 〈P (Y), Z − A(Y)〉, so that Fq[Y]/〈P 〉 is isomorphic to Fq[Z, Y]/I.
Then, SA is isomorphic to the subalgebra Fq[Z]/Q of Fq[Z, Y]/I, where Q is the minimal
polynomial of A modulo P .

If (h) holds, then Fq[Y]/〈P 〉 is isomorphic to Fq[Z, Y]/〈Q(Z), R(Z, Y)〉, and the conclu-
sion follows.

Conversely, suppose that Fq[Y]/〈P 〉 is a free SA-module, generated by powers of Y of
the form 1, Y, . . . , Y e. Let R(Z, Y) be the characteristic polynomial of Y in this free SA-
module, so that deg(R, Y) = e + 1; to conclude, we prove that (Q(Z), R(Z, Y)) generates
I. Obviously, both Q and R are in I. Conversely, take F in I and let F ′ be its remainder
modulo 〈Q(Z), R(Z, Y)〉. Then, deg(F ′, Y) ≤ e, so we can write F ′ =

∑
i≤e fi(Z)Y i. Since

F ′ is in I, all fi must be zero modulo Q, that is, identically zero, and F ′ itself must be
zero.

6.3 The general case

Suppose now that s is arbitrary, let Y = Y1, . . . , Ys, and let I be a zero-dimensional radical
ideal in Fq[Y]. We let R be the residue class ring Fq[Y]/I, and let δ be the dimension of R
over Fq. In all that follows, p denotes the characteristic of Fq.

Our goal here is to decide whether there exists a triangular set T for the order Y1 <
· · · < Ys such that 〈T〉 = I, and if so compute it. Our input is a univariate representation
P = (Q,λ,W) of I, with λ = (λ1, . . . , λs) and λs = 1.

29

Starting from P, we will reintroduce the variables Ys, . . . , Y1 one by one, in this order,
and eventually deduce T (or prove there is no such T). Remark that P can be seen as
a mixed representation Ms of format (s, 1) for I. We will use it as the starting point for
an iterative process, constructing mixed representations Mj of formats (j, s − j + 1), for
j = s− 1, . . . , 1.

We will thus say that (Hj) holds if I admits a mixed representation of format (j, s−j+1).
Then, we have the following:

• By the former remark, (Hs) holds.

• (H1) holds if and only the triangular set T we are looking for exists; in this case,
writing M1 = (P1,V1, `1), and assuming `1 = (1), we have T = P1 (up to renaming
the variables).

• Assuming q ≥ δ2, if (Hj−1) holds, then (Hj) holds (this is a consequence of Lemma 10).

Thus, starting from s, it is sufficient to iteratively test whether (Hs−1), . . . , (H1) hold, and
if so compute corresponding mixed representations. If the test fails at any j, we know that
T does not exist. The following lemma shows how to do the iterative step, from format
(j, s− j + 1) to (j − 1, s− j + 2).

Lemma 18. Fix ε > 0, and suppose that the inequalities q ≥ δ2 and p > δ hold. Given a
mixed representation M = (P,V, `) of format (j, s− j + 1) for I, with ` = (`1, . . . , `j) and
`j = 1, one can do the following using an expected s δ1+ε log(q) plogε(log(q)) bit operations:

• decide whether (Hj−1) holds;

• if so, compute a mixed representation M ′ = (P′,V′, `′) of format (j − 1, s− j + 2) for
I, with `′ = (`′1, . . . , `

′
j−1) and `′j−1 = 1.

With notation as above, one can do the following using δ1+ε log(q) plogε(log(q)) bit operations:

• given M , M ′ and A in RP, compute its image through the isomorphism ΨM ′ ◦ ΦM :
RP → RP′.

• given M , M ′ and A in RP′, compute its image through the isomorphism ΨM ◦ ΦM ′ :
RP′ → RP.

Proof. Let M = (P,V, `) be a mixed representation of format (j, s − j + 1) for I, with
P = (P, Pj+1, . . . , Ps) in Fq[Y, Yj+1, . . . , Ys], V = (V1, . . . , Vj) in Fq[Y], ` = (`1, . . . , `j), and
`j = 1.

Our first purpose is to find `′ = (`′1, . . . , `
′
j−1) in Fj−1

q , with `′j−1 = 1 such that
∑

i≤j−1 `
′
iYi

is a primitive element of level j − 1. To do so, we choose `′ at random, and test whether
Y1, . . . , Yj−1 can be written as polynomials in

∑
i≤j−1 `

′
iYi modulo I. Recall that associated

to M , we have mutually inverse isomorphisms

ΨM : R → RP

Y1, . . . , Yj 7→ V1, . . . , Vj
Yj+1, . . . , Ys 7→ Yj+1, . . . , Ys.

and

ΦM : RP → R

Y 7→
∑

i≤j `iYj
Yj+1, . . . , Ys 7→ Yj+1, . . . , Ys.

30

Applying ΨM , the former condition is equivalent to testing whether V1, . . . , Vj−1 can be
written as polynomials in A =

∑
i≤j−1 `

′
iVi modulo P . This is done as follows:

• we compute the traces tr(Ak)k<2δ and tr(ViA
k)k<δ, for i ≤ j−1 (these are traces defined

modulo P)

• using Lemma 11, we first compute the minimal polynomial Q of A modulo P , then
candidates polynomials V ′1 , . . . , V

′
j−1 in Fq[Z]

• we test whether V ′i (A) = Vi mod P for i ≤ j − 1.

For a fixed `′, in view of Lemma 11 and Theorem 3, going through this process takes an
expected s δ1+ε log(q) plogε(log(q)) bit operations. Since q ≥ δ2, Lemma 9 shows that we
expect to test 2 choices of `′ before finding a primitive element of level j − 1. Thus, the
overall expected cost to find `′ and V′ is s δ1+ε log(q) plogε(log(q)) bit operations.

Recall that (Hj) holds by assumption. Using the notation of Subsection 4.2, Lemma 10
implies that (Hj−1) holds if and only if Rj is a free Rj−1-module, with a basis consisting of
the first powers of Yj. Through ΨM , we have the isomorphism Rj ' Fq[Y]/〈P 〉, Rj−1 is the
subring of Rj generated by A, and Yj is mapped to Vj.

Let B =
∑

i≤j−1 `iV
′
i , so that we have Y = Vj + B(A) mod P (because `j = 1). This

remark allows us to apply Lemma 17: this shows that (Hj−1) holds if and only if assumption
(h) of the last subsection holds, for the polynomials P , A and Vj. Using Lemma 16, we can
thus decide whether (Hj−1) holds, and if so compute polynomials (Q(Z), S(Z, Y)) that form
a triangular set in Fq[Z, Y], and such that we have isomorphisms

ψ : Fq[Y]/〈P 〉 → Fq[Z, Y]/〈Q,S〉
Y 7→ Y +B

and
ϕ : Fq[Z, Y]/〈Q,S〉 → Fq[Y]/〈P 〉

Z 7→ A
Y 7→ Vj.

Remark in particular that ψ sends V1, . . . , Vj−1, Vj to V ′1 , . . . , V
′
j−1, Y . Computing all traces

required by Lemma 16 and doing all post-processing fits into the same time bound as before.
Next, we reintroduce the variables Yj+1, . . . , Ys. We will consider the triangular set P′ =

(Q,S, P ′j+1, . . . , P
′
s) in Fq[Z, Y, Yj+1, . . . , Ys], with

P ′k = Pk(Y +B, Yj+1, . . . , Yk) mod Q.

Recalling that we write RP = Fq[Y, Yj+1, . . . , Ys]/〈P〉 and RP′ = Fq[Z, Y, Yj+1, . . . , Ys]/〈P′〉,
we deduce the existence of the mutually inverse isomorphisms

Ψ : RP → RP′

Y 7→ Y +B
Yj+1, . . . , Ys 7→ Yj+1, . . . , Ys

and

Φ : RP′ → RP

Z 7→ A
Y 7→ Vj

Yj+1, . . . , Ys 7→ Yj+1, . . . , Ys;

as before, the former map sends V1, . . . , Vj−1, Vj to V ′1 , . . . , V
′
j−1, Y . Let us fix k and deter-

mine the cost of computing P ′k: this is done by applying ψ coefficient-wise, which amounts
to deg(Pj+1, Yj+1) · · · deg(Pk, Yk) applications. By Theorem 3, each of them takes time

31

d1+ε log(q) plogε(log(q)), with d = deg(P). Since d deg(Pj+1, Yj+1) · · · deg(Pk, Yk) = δ, all
P ′k can be computed in an expected s δ1+ε log(q) plogε(log(q)) bit operations.

Composing with ΨM and ΦM with Ψ and Φ, we obtain the following:

R → RP′

Y1, . . . , Yj−1 7→ V ′1 , . . . , V
′
j−1

Yj, . . . , Ys 7→ Y, Yj+1, . . . , Ys.
and

RP′ → R
Z 7→

∑
i≤j−1 `

′
iYi

Y, Yj+1, . . . , Ys 7→ Yj, . . . , Ys.

Thus, M ′ = (P′,V′, `′) is a mixed representation of format (j − 1, s− j + 2) for I, and the
previous maps are ΨM ′ and ΦM ′ .

The final point to discuss is the cost of applying the isomorphisms Ψ = ΨM ′◦ΦM and Φ =
ΨM ◦ΦM ′ . Both of them leave Yj+1, . . . , Ys unchanged, so these operations amount to apply
deg(Pj+1, Yj+1) · · · deg(Pk, Yk) times ψ and ϕ, respectively. By Theorem 3, each application
takes time d1+ε log(q) plogε(log(q)), so the total time is δ1+ε log(q) plogε(log(q)).

As a consequence of the former lemma, we deduce the following result, which is the main
point in this section. The proof is now straightforward.

Proposition 19. Fix ε > 0. Then, given P = (Q,λ,W) as above, such that q ≥ δ2 and
p > δ, one can do the following in an expected s2 δ1+ε log(q) plogε(log(q)) bit operations:

• decide whether there exists a triangular set T for the order Y1 < · · · < Ys that gener-
ates I

• if so, compute Ms, . . . ,M1, with Mi = (Pi, `i,Vi), such that

– Ms = P,

– for i = s− 1, . . . , 1, Mi is obtained from Mi+1 by means of Lemma 18,

– T = P1.

With notation as before, one can do the following in s δ1+ε log(q) plogε(log(q)) bit operations:

• given M1, . . . ,Ms and A in Fq[Y]/Q, compute its image in RT

• given M1, . . . ,Ms and A in RT compute its image in Fq[Y]/Q.

6.4 Proof of Theorem 2

Finally, we prove Theorem 2. On input, we are given a triangular set T for the order
Y1 < · · · < Ys, with multidegree d, and a target order Yσ(1) < · · · < Yσ(s) on the variables.
We assume that the characteristic p of the base field satisfies p > δd.

We want to decide whether the ideal 〈T〉 is radical, and if so, whether there exists a
triangular set T′ for the order Yσ(1) < · · · < Yσ(s) that generates the same ideal as T. We
also wish to do the change of bases RT → RT′ and back.

First, if needed, we extend the base field, to ensure that the assumption q ≥ δ2
d holds.

This is done as in Subsection 5.4; since all the costs incurred by this field extension will fit
in our target time complexity, for simplicity, we will still denote our base field by Fq.

32

Applying Proposition 15, we can decide if T is squarefree, and if so, compute a primitive
representation P = (P,V, `), with `σ(s) = 1, giving us inverse isomorphisms

ΨP : RT → Fq[Y]/〈P 〉 and ΦP : Fq[Y]/〈P 〉 → RT.

Let further W1 = Vσ(1), . . . ,Ws = Vσ(s) be the images of Yσ(1), . . . , Yσ(s) through ΨP , and
let λ = (λ1, . . . , λs), with λi = `σ(i). Finally, let Z1, . . . , Zs = Yσ(1), . . . , Yσ(s). As a result,
Q = (P,W,λ) is a primitive representation for the ideal I = 〈T〉 in Fq[Z], with λs = 1.

We are thus in a position to apply Proposition 19: this provides us with the triangular
set T′ (or proves it does not exist). The total time reported in Propositions 15 and 19 is an
expected s2 δ1+ε log(q) plogε(log(q)) bit operations.

To do the change of basis RT → RT′ , we first convert from RT to Fq[Y]/〈P 〉 using Propo-
sition 15; this takes s δ1+ε log(q) plogε(log(q)) bit operations. Then, mapping Fq[Y]/〈P 〉 to
RT′ is done by means of the second part of Proposition 19, for a similar amount of time.
The inverse change of basis RT′ → RT is done by first converting from RT′ to Fq[Y]/〈P 〉,
then to RT, using again Propositions 15 and 19. The time estimate is the same.

7 An illustration from elliptic curve point counting

In this section, we describe a situation similar to the example given in the introduction,
where change of order was used to simplify factorization.

The following construction originates from point-counting algorithms for elliptic curves
over finite fields. The objective is to count the number of points of an elliptic curve E :
Y 2 = X3 +AX +B over Fp; this is a fundamental operation in elliptic curve cryptology, see
for instance [6]. In large characteristic, the best algorithms are based on Schoof’s landmark
contribution [39] and its improvements by Elkies [16] and Atkin [4].

These algorithms operate by Chinese Remaindering, by determining |E| modulo various
primes `. For a given `, Schoof’s algorithm finds |E| mod ` by doing a search modulo the
division polynomial ψ`. This polynomial has degree (`2 − 1)/2; its roots are the (pairwise
distinct) X-coordinates of the `-torsion points on |E|.

Elkies proposed to improve this phase, by working only modulo a factor f` of ψ` of degree
(`− 1)/2. This factor is obtained as follows:

• let Φ` ∈ Z[J, J ′] be the `th modular polynomial and let ϕ` = Φ` mod p;

• compute a root α of ϕ`(J, j(E)), where j(E) is the j-invariant of E (or determine that
no such root exists);

• if such a root exists, deduce f` from α.

We will not give more details here. It is enough to note that Φ` is a bivariate polynomial of
degree `2, with coefficients of bit-size about `, so the cost of Elkies’ construction is Ω(`3) bit
operations. The primes ` for which the root α exists are called Elkies primes; conjecturally,
for a given E, about half of the primes are Elkies primes. As a consequence, one may make
the assumption that ` ≤ log(p); then, the cost for a given ` is an expected ` log(p)2 bit
operations, up to logarithmic factors [30].

33

We will discuss here an alternative to Elkies’ construction, due to Charlap, Coley and
Robbins [13]. A cost analysis is given in [36], with a result of the form `4 +` log(p) operations
in Fp for a given `, which is `4 log(p) + ` log(p)2 bit operations (omitting logarithmic factors
in both cases). We will show that our results allow us to reduce the cost and make it
comparable to the one of Elkies’ algorithm.

Again, the purpose is to find a suitable factor f` of ψ`; now, this is done by purely
“algebraic” means, whereas Elkies’ approach relies on transcendental arguments. Let [m]
denote the multiplication-by-m map on E; then, there exist rational functions γm, ηm in
Fp(X) such that for all (x, y) in E, we have

[m](x, y) = (γm(x), yηm(x));

γm has a pole at x if and only if [m](x, y) is a zero on E. Let R = Fp[X]/ψ`, and for m < `,
let gm ∈ R be the image of γm in R; γm mod ψ` is well-defined, as one easily sees that its
denominator has no common root with ψ`. Finally, define A =

∑(`−1)/2
i=1 gi.

Lemma 20. Let mA be the minimal polynomial of A modulo ψ`.

• mA has degree at most `+ 1.

• if deg(mA) = `+ 1, then χA = m
(`−1)/2
A .

Proof. Let x be a root of ψ`, and let P = (x, y) be a corresponding `-torsion point on E.
Then, A(x) is the sum of the abscissas of the points P, . . . , [(` − 1)/2]P . In particular,
A(x) = A(g2(x)) = · · · = A(g(`−1)/2(x)); thus, the roots of ψ` can be partitioned into ` + 1
subsets over each of which A takes a constant value. The conclusion follows from Equation (1)
of Section 4.

Let us suppose that we are in the case where deg(mA) = `+ 1 (this is true “in general”,
see [13]). Then, the former lemma implies that the ideal 〈ψ`(Y), Z −A(Y)〉 is generated by
the triangular triangular set (P (Z), Q(Z, Y)), with P = mA, deg(P) = `+1 and deg(Q, Y) =
(`− 1)/2. Furthermore, Charlap, Coley and Robbins prove that ` is an Elkies prime if and
only if P has a root α in Fp; in this case, Q(α, Y) is the factor f` we are looking for.

The following theorem gives a cost estimate on the computation of this factor, which
shows it to be roughly as costly as Elkies’ approach: if one could take ε = 0 below, the
second term would become dominant, and the overall cost would be ` log(p)2 plog(log(p)),
as for Elkies’ algorithm.

Theorem 21. Fix ε > 0. If ` ≤ log(p), one can compute an Elkies factor (or determine
that none exists) in an expected

(
`2+ε log(p) + ` log(p)2

)
plogε(` log(p)) bit operations.

Proof. First, we compute ψ`, by the standard binary powering scheme [6]; this can be done
using `2 log(p) plog(` log(p)) bit operations.

Next, we show how to compute A for the cost of O(log(`)) modular compositions modulo
ψ`, using binary powering techniques inspired by the trace computation of [19] (see [32]

34

for a previous instance of the following computation). Let τ be a generator of F∗` ; then,

A =
∑(`−1)/2−1

i=0 gτ i . For g ≥ 0, let

Gk = g
τ2k

and Ak =
2k−1∑
i=0

gτ i .

For simplicity, we show here how to compute Ak. Since we have ga(gb) mod ψ` = gab, it is
sufficient to compute

• G0, G1, . . . , Gk by means of Gj+1 = Gj(Gj) mod ψ`

• A0, A1, . . . , Ak by means of Aj+1 = Aj(Gj) + Aj mod ψ`.

The slightly more general question of computing A (which involves summation bounds that
are not powers of 2) is handled similarly. In any case, this requires O(log(`)) modular
compositions modulo ψ`; the cost is an expected `2+ε log(p) plogε(log(p)) bit operations, by
Theorem 1.

Once A is known, we apply the change of order algorithm of Theorem 2 to the system
(ψ`(Y), Z−A(Y)); this is valid, since ψ` is squarefree, and p ≥ `2. This gives us the triangular
set (P (Z), Q(Z, Y)) for the same expected `2+ε log(p) plogε(log(p)) bit operations. Finally,
we find a root α of the minimal polynomial P (if any) in an expected ` log(p)2 plog(` log(p))
bit operations [18, Corollary 14.16]. We deduce the factor Q(α, Y) by evaluation, for a cost
linear in `2 log(p), up to logarithmic factors.

Acknowledgments

Adrien Poteaux was supported by the EXACTA grant of the National Science Foundation of
China (NSFC 60911130369), the French National Research Agency (ANR-09-BLAN-0371-
01) and the European union (PITN-GA-2008-214584 SAGA). Éric Schost is supported by
NSERC and the Canada Research Chair program.

References

[1] C. J. Accettella, G. M. Del Corso, and G. Manzini. Inversion of two level circulant
matrices over Zp. Linear Algebra and its Applications, 366:5 – 23, 2003.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[3] M. E. Alonso, E. Becker, M.-F. Roy, and T. Wörmann. Zeros, multiplicities and idempo-
tents for zerodimensional systems. In MEGA 94, volume 142 of Progress in Mathematics,
pages 1–15. Birkhäuser, 1996.

[4] A. O. L. Atkin. The number of points on an elliptic curve modulo a prime (II). Available
at http://listserv.nodak.edu/archives/nmbrthry.html, 1992.

35

[5] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. Journal
of Symbolic Computation, 28(1, 2):45–124, 1999.

[6] I. Blake, G. Seroussi, and N. Smart. Elliptic curves in cryptography, volume 265 of
London Mathematical Society Lecture Notes Series. Cambridge University Press, 1999.

[7] A. Bostan, P. Flajolet, B. Salvy, and É. Schost. Fast computation of special resultants.
Journal of Symbolic Computation, 41(1):1–29, 2006.

[8] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In ISSAC’03,
pages 37–44. ACM, 2003.

[9] A. Bostan, M. F. I. Chowdhury, J. van der Hoeven, and É. Schost. Homotopy methods
for multiplication modulo triangular sets. Journal of Symbolic Computation. To appear.

[10] F. Boulier, F. Lemaire, and M. Moreno Maza. PARDI! In ISSAC’01, pages 38–47.
ACM, 2001.

[11] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series.
Journal of the ACM, 25(4):581–595, 1978.

[12] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory. Springer,
1997.

[13] L. S. Charlap, R. Coley, and D. P. Robbins. Enumeration of rational points on elliptic
curves over finite fields. Draft, 1991.

[14] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251–280, 1990.

[15] X. Dahan, M. Moreno Maza, É. Schost, and Y. Xie. On the complexity of the D5
principle. In Transgressive Computing, pages 149–168, 2006.

[16] N. Elkies. Explicit isogenies. Draft, 1992.

[17] J. von zur Gathen. Functional decomposition of polynomials: the tame case. Journal
of Symbolic Computation, 9:281–299, 1990.

[18] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 1999.

[19] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials.
Computational Complexity, 2(3):187–224, 1992.

[20] P. Gianni and T. Mora. Algebraic solution of systems of polynomial equations using
Gröbner bases. In AAECC’5, volume 356 of Lecture Notes in Computer Science, pages
247–257. Springer Verlag, 1989.

36

[21] M. Giusti, J. Heintz, J. E. Morais, J. Morgenstern, and L. M. Pardo. Straight-line pro-
grams in geometric elimination theory. Journal of Pure and Applied Algebra, 124:101–
146, 1998.

[22] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner free alternative for polynomial system
solving. Journal of Complexity, 17(1):154–211, 2001.

[23] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications.
Journal of Complexity, 14(2):257–299, Jun 1998.

[24] É. Hubert. Notes on triangular sets and triangulation-decomposition algorithms. I.
Polynomial systems. In Symbolic and numerical scientific computation, volume 2630 of
Lecture Notes in Computer Science, pages 1–39. Springer, 2003.

[25] M. Kalkbrener. A generalized euclidean algorithm for computing triangular represen-
tations of algebraic varieties. Journal of Symbolic Computation, 15:143–167, 1993.

[26] E. Kaltofen. Greatest common divisors of polynomials given by straight-line programs.
Journal of the ACM, 35(1):231–264, 1988.

[27] E. Kaltofen. Challenges of symbolic computation: my favorite open problems. Journal
of Symbolic Computation, 29(6):891–919, 2000.

[28] E. Kaltofen and Y. Laskhman. Improved sparse multivariate polynomial interpolation
algorithms. In ISSAC’88, volume 358 of Lecture Notes in Computer Science, pages
467–474. Springer Verlag, 1989.

[29] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition.
To appear, available at http://www.cs.caltech.edu/~umans/papers/KU08-final.

pdf.

[30] R. Lercier and T. Sirvent. Elkies subgroups of elliptic curve `-torsion points. Journal
de Théorie des Nombres de Bordeaux, 20(3):783–797, 2008.

[31] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets: from theory
to practice. Journal of Symbolic Computation, 44(7):891–907, 2009.

[32] F. Morain, P. Mihailescu, and É. Schost. Computing the eigenvalue in the Schoof-
Elkies-Atkin algorithm using Abelian lifts. In ISSAC’07, pages 285–292. ACM, 2007.

[33] M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical Report
TR 4/99, NAG Ltd, Oxford, UK, 1999. http://www.csd.uwo.ca/~moreno/.

[34] V. Y. Pan. Simple multivariate polynomial multiplication. Journal of Symbolic Com-
putation, 18(3):183–186, 1994.

[35] C. Pascal and É. Schost. Change of order for bivariate triangular sets. In ISSAC’06,
pages 277–284. ACM, 2006.

37

[36] C. Peters. Bestimmung des Elkies-Faktors im Schoof-Elkies-Atkin-Algorithmus, 2006.
Diploma Thesis, Universität Paderborn.

[37] Daniel Reischert. Asymptotically fast computation of subresultants. In Proceedings of
the 1997 international symposium on Symbolic and algebraic computation, ISSAC ’97,
pages 233–240, New York, NY, USA, 1997. ACM.

[38] F. Rouillier. Solving zero-dimensional systems through the Rational Univariate Repre-
sentation. Applicable Algebra in Engineering, Communication and Computing, 9(5):433–
461, 1999.

[39] R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p.
Mathematics of Computation, 44:483–494, 1985.

[40] É. Schost. Complexity results for triangular sets. Journal of Symbolic Computation,
36(3–4):555–594, 2003.

[41] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. Mathe-
matics of Computation, 54(189):435–447, 1990.

[42] V. Shoup. A fast deterministic algorithm for factoring polynomials over finite fields of
small characteristic. In ISSAC’91, pages 14–21. ACM, 1991.

[43] V. Shoup. Fast construction of irreducible polynomials over finite fields. Journal of
Symbolic Computation, 17(5):371–391, 1994.

[44] C. Umans. Fast polynomial factorization and modular composition in small character-
istic. In STOC, pages 481–490, 2008.

[45] L. Yang, X. Hou, and B. Xia. A complete algorithm for automated discovering of a
class of inequality-type theorems. Science in China. Series F. Information Sciences,
44(1):33–49, 2001.

38

