Almost-linear time algorithms for operations with triangular sets

Xavier Dahan*, Marc Moreno Maza†, Adrien Poteaux§, Éric Schost†

* Faculty of Mathematics, Kyushu University
† Ontario Research Centre for Computer Algebra, University of Western Ontario, London
§ Institute of Applied Geometry, Johannes Kepler University, Linz

Background

Triangular set: polynomials in \(F[X_1, \ldots, X_n] \) with a triangular structure

\[
T = \left\{ \frac{f_i}{f_j} \right\}_{f_i, f_j \in \mathcal{F}(X_1, \ldots, X_n)}
\]

\(T_i \) is monic in \(X_i \) and reduced modulo \(\langle T_1, \ldots, T_{i-1} \rangle \). Here, \(F \) is a perfect field, and all ideals will be radical.

Triangular decomposition of an ideal \(I \): a family of triangular sets \(T^{(1)}, \ldots, T^{(s)} \) with

\[I = \langle T^{(1)} \rangle \cap \cdots \cap \langle T^{(s)} \rangle \]

and, for all \(i \neq j \),

\[(T^{(i)}) + (T^{(j)}) = \langle 1 \rangle. \]

Non unique, in general.

Equiprojectable decomposition: a canonical triangular decomposition. Splits according to the cardinality of fibers of projections.

Complexity measure: \(\delta \)
- for a single \(T \), \(\delta = \deg(T_1, X_1) \cdots \deg(T_n, X_n) \)
- for a triangular decomposition, \(\delta = \delta(T^{(1)}) + \cdots + \delta(T^{(s)}) \).

Our Problems

Multiplication
- given \(T \) and polynomials \(A, B \) reduced modulo \(T \), compute \(AB \) modulo \(T \).

Quasi-inverse
- given \(T \) and \(A \) reduced modulo \(T \), return:
 - the equiprojectable decomposition \(T^{(1)}, \ldots, T^{(s)} \) of \(\langle T, A \rangle \) (where \(A \) vanishes)
 - the equiprojectable decomposition \(T^{(1)}, \ldots, T^{(s)} \) of \(\langle T \rangle : A^\infty \) (where \(A \) is invertible), and the inverse of \(A \) modulo each \(T^{(i)} \).

Change of order
- given \(T \) and a target variable order \(\prec' \),
 - return the equiprojectable decomposition \(T^{(1)}, \ldots, T^{(s)} \) of \(\langle T \rangle \) for the order \(\prec' \).
 - for \(A \) reduced modulo \(T \), compute the image of \(A \) modulo each \(T^{(i)} \), and conversely.

Previous work

- **Triangular sets**: Wu, Kalkbrener, Lazard, Aubry, Moreno Maza, etc.
- **Equiprojectable decomposition**: Aubry, Valibouze (2000)
 - Dahan, Moreno Maza, Schost, Wu, Xie (2005)

- **Classical algorithms (subquadratic time)**
 - Modular composition: Brent, Kung (1978)

- **Almost linear time**
 - any finite field: Kedlaya-Umans (2008)

Main results

Theorem. For any \(\varepsilon > 0 \), there exists a constant \(c_\varepsilon \) such that over \(F_q \), all previous problems can be solved using an expected \(c_\varepsilon \delta^{1+\log(q)} \log(q) \log(q)^\varepsilon \) bit operations.

Remarks:
- cost are in a boolean RAM model
- Las Vegas algorithm

Discussion:
- input and output size are \(\delta \log(q) \)
- multiplication (previous: \(4^n \delta \log(q) \)) and quasi-inverse (previous: \(K^n \delta \log(q) \)).
 - not an improvement w.r.t. previous work if \(n \) is fixed
 - better if each \(\deg(T_i, X_i) \) fixed
- change of order, equiprojectable decomposition:
 - first quasi-linear time result

Main ideas: introduce a primitive element, change representation, and solve the problem for univariate polynomials